The Influence of Thermo-Plastic Deformation on the Structure and Mechanical Properties of Powder Metallurgy Materials

  • Yu. V. Milman


Powder metallurgy materials as a rule have porosity after sintering. Different pressure working processes (extrusion, pressing, forging, rolling etc.) are used to decrease porosity. Pressure working leads not only to consolidation of materials, but to changes in structure and substructure of materials, i.e. to variation of grain size and formation of dislocation substructure as well.


Dislocation Structure Dislocation Substructure Cold Deformation Recrystallization Temperature Diffusion Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.M. Ristich, V.I. Trefilov, Yu.V. Milman, I.V. Gridneva, D. Duzevich. Structure and Mechanical Properties of Powder Metallurgy Materials. Cerbian Academy of Science and Art, Belgrad (1992).Google Scholar
  2. 2.
    V.I. Trefilov, Yu.V. Milman, I.V. Gridneva, Role of plastic deformation in sintering covalent crystals, Powder Metallurgy and Metal Ceramics, 33, 7-8: 357 (1994).CrossRefGoogle Scholar
  3. 3.
    M.L. Bernstein. Structure of deformed metals. Metallurgy, Moscow (1977) (in Russian).Google Scholar
  4. 4.
    Yu.V. Milman, Structural aspects of warm and cold plastic deformation of crystalline materials, Metal Science and Heat Treatment of Metals, 6:2 (1985) (in Russian).Google Scholar
  5. 5.
    V.I. Trefilov, Yu.V. Milman, I.V. Gridneva, Characteristic temperature of deformation of crystalline materials, Crystal Res. & Technol. 19, 3: 413 (1984).CrossRefGoogle Scholar
  6. 6.
    Yu.V. Milman, Characteristic temperature of deformation of materials and cold brittleness of BCC metals and ceramics, in: Mechanics of Creep Brittle Materials-2, A.C.F. Cocks and A.R.S. Ponter, Eds., Elsevier Science, Leicester, UK (1991).Google Scholar
  7. 7.
    V.I. Trefilov, Yu.V. Milman, R.K. Ivashchenko, Yu.A. Perlovich, A.P. Rachek and N.I. Freze. Structure, Texture and Mechanical Properties of Deformed Molybdenum Alloys. Naukova Dumka, Kiev (1983) (in Russian).Google Scholar
  8. 8.
    V.I. Trefilov, Yu.V. Milman, S.A. Firstov. Physical Basis of Strength for Refractory Metals. Naukova Dumka, Kiev (1975) (in Russian).Google Scholar
  9. 9.
    V.I. Trefilov, Yu.V. Milman, Physical basis of thermomechanical treatment of refractory metals, in: 12 th Plansee Seminar, H. Bildstein, H. Ortner Eds., Metallwerk Plansee, Reutte, Austria (1989).Google Scholar
  10. 10.
    Yu.V. Milman, A.P. Rachek, G.G. Kurdumova, A.V. Abalikchin, N.I. Freze, To the problem of 45° brittleness of the low alloyed molybdenum sheet, Physics of Metals and Physical Metallurgy 48, 2: 309 (1979).Google Scholar
  11. 11.
    Yu.V. Milman, The influence of directed alloying and thermomechanical treatment on the structure and mechanical properties of high-purity chromium, molybdenum and tungsten, J.De Physique IV 5: 67 (1995).Google Scholar
  12. 12.
    R.A. Andrievsky, On the temperature dependence of densification in sintering, Sci.Sintering 16, 1: 3 (1984).Google Scholar
  13. 13.
    F.R. Nabarro, Deformation of crystals by the motion of single ions, in: Reports of a Conference on Strength of Solids, The Physical Soc. of London, Cambridge (1948).Google Scholar
  14. 14.
    C. Hering, Diffusional viscosity of a polycrystalline solid, J.Appl. Phys. 21, 5: 437 (1950).CrossRefGoogle Scholar
  15. 15.
    I.M. Lifshits, Theory of dynamic-viscose yielding of polycrystalline solids, Zh. Eksp. Teor. Fiz. 44:1349 (1963).Google Scholar
  16. 16.
    R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J.Appl. Phys. 34: 1679 (1963).CrossRefGoogle Scholar
  17. 17.
    M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Met. 21, 2: 149 (1973).CrossRefGoogle Scholar
  18. 18.
    Ya.E. Geguzin. Physics of Sintering, Nauka, Moscow (1984) (in Russian).Google Scholar
  19. 19.
    Ya.E. Geguzin, A.S. Dzyuba, V.P. Matsokin, Dislocation structures formed in the contact zone of two single crystals, Ukr. Fiz. Zh. 29, 9: 1419 (1984).Google Scholar
  20. 20.
    Ya.E. Geguzin, A.K. Emets, V.G. Kononenko, D.V. Pluzhnikova, Dislocation mechanism of high-temperature deformation of elements of the roughness of compressed real surfaces, Poroshk. Metall. 6: 35 (1982).Google Scholar
  21. 21.
    W. Schatt, Untersudningen an Kupfer-Einkristall Sintermodellen, Kristall und Tecnik. 10, 9: 845 (1975).CrossRefGoogle Scholar
  22. 22.
    W. Schatt, E. Friedrich, Versetzungsbildung während des Sinterns, Planseeberichte för Pulvermetallurgie 25, 3: 145 (1977).Google Scholar
  23. 23.
    W. Schatt, E. Friedrich, Crystal Research and Technology 17, 9: 149 (1982).CrossRefGoogle Scholar
  24. 24.
    E. Friedrich, W. Schatt, Sintering of one-component model systems: nucleation and movement of dislocation in necks, Powder Met. 23, 4: 193 (1980).Google Scholar
  25. 25.
    E. Friedrich, W. Schatt, Vergetzungsverrvielfachung als Sinterreaktion, Z. Metallkunde 73, 1: 56 (1982).Google Scholar
  26. 26.
    M.P. Poire. High-temperature plasticity of crystalline solids, Metallurgiya, Moscow (1982) (in Russian).Google Scholar
  27. 27.
    F. Garofalo. Laws of creep and long-term strengths of metals, Metallurgiya, Moscow (1968) (in Russian).Google Scholar
  28. 28.
    I. Weertman, Steady-state creep of crystal, J.Appl. Phys. 28, 10: 1185 (1957).CrossRefGoogle Scholar
  29. 29.
    M.F. Ashby, A first report of deformation-mechanism maps, Acta Met. 20, 7: 887 (1972).CrossRefGoogle Scholar
  30. 30.
    S. Erdmann-Jesnitzer, F. Günther, Gesetzmäßigkeiten bei Verwachsungsvorgängen von Kristallen. II. R ntgenographische Untersuchungen an verklebten Steinsalzkristallen, Z.Metallkunde 46, 12: 801 (1955).Google Scholar
  31. 31.
    Yu.I. Boiko, R.B. Lakhterman, Stresses formed in diffusion sintering sets of real powder particles, Poroshk. Metall. 8: 31 (1976).Google Scholar
  32. 32.
    W. Schatt, E. Friedrich, Dislocation-activated sintering processes, in: Sintering-85, Plenum Press, N.Y.-L. (1987).Google Scholar
  33. 33.
    I.P. Arsentyeva, M.M. Ristić, Dislocation structure of nickel powder and its role in the sintering process, in: Sintering-85, Plenum Press, N.Y.-L. (1987).Google Scholar
  34. 34.
    Yu.V. Milman, N.P. Zakharova, R.K. Ivashchenko and N.I. Freze, Structure and mechanical properties of K-dopped W wire, in: Proc 14 Plansee Seminar, G. Kneringer, P.Röhammer and P. Wilhartitz, Eds., Metallwerk Plansee, Reutte, 1: 128 (1997).Google Scholar
  35. 35.
    Yu.V. Milman and K.P. Riaboshapka, About «crystallization of dispersion hardened alloys with BCC lattice, Physics of Metals and Metallography (in Russian), 32, 5: 998 (1971).Google Scholar
  36. 36.
    Yu.V. Milman, I.V. Gridneva, I.V. Goncharova and V.A. Goncharuk, Effect of crack-tip stress relaxation under load on silicon strength characteristics, Sci. Sintering 30(1): 29 (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Yu. V. Milman
    • 1
  1. 1.Institute for Problems of Materials ScienceUkrainian National Academy of SciencesKievUkraine

Personalised recommendations