Synthesis and Sintering Of PZT Ceramics

  • J. A. Varela
  • M. A. Zaghete
  • A. Z. Simões
  • M. Cilense
  • E. Longo


Lead zirconate powder, with Zr/Ti ratio of 50/50 was prepared by polymeric precursor method and doped with 3, 5 and 7 mol% of Sr+2 or Ba, as well as by 0.2 to 5 mol% of Nb+5. The powder was calcined at 750°C by 4 hours and milled during 1.5 h in isopropilic alcohol. Powders were characterized by surface area measurements (BET method), by infrared spectroscopy and by X-ray diffraction to characterize the crystal structure. Isostatically pressed samples were sintered in a dilatometer furnace by using a constant heating rate of 10 °C/min from ambient to 1200°C. Synthetic air and air with water vapor were used as atmospheres. Both Sr+2 and Ba+2 substitute Pb+2 and favor the formation of rhombohedral phase. Otherwise, Nb+5 substitute preferentially Zr+4 favoring tetragonal phase. The concentration of dopants and the atmosphere influence the densification and the microstructure of the PZT, which alters the dielectric and piezoelectric properties of the ceramics.


Morphotropic Phase Boundary Shrinkage Rate Rhombohedral Phase Lead Titanate Pechini Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Jaffe, W. R. Cook Jr and H. Jaffe, Piezoelectrics Ceramics, Academic Press, New York, 1971, p 135.Google Scholar
  2. 2.
    S. Troiler-McKinstry and R. E. Newnhan, MRS Bull. 28 27 (1993)CrossRefGoogle Scholar
  3. 3.
    K Uchino, Problem Solving Piezoelectric Actuators, Morikita Publ, Tokyo, 1991.Google Scholar
  4. 4.
    S. S. Chantratreya, M. R. Fulrath, and J. A. Pask, Reaction mechanisms in the formation of PZT solid solution. J. Am. Ceram. Soc. 64 (7), 422–425 (1981)CrossRefGoogle Scholar
  5. 5.
    B. Jaffe, W. R. Cook Jr and H. Jaffe, Piezoelectrics Ceramics, Academic Press, New York, 1971, p 253.Google Scholar
  6. 6.
    X. Yang, T. K. Chaki, J. Mater. Sei. 32 4661 (1997).CrossRefGoogle Scholar
  7. 7.
    M. S. Multani, S. G. Gorkarn, V. R. Palkarard, and R. Vijayaraghavan, Morphotropic phase boundary in the system Pb (ZrxTi1-x) O3. Mater. Res. Bull. 17 (1) 101–104 (1982)CrossRefGoogle Scholar
  8. 8.
    L. M. Sheppard, “International Trends in Powder Technology”, Am. Ceram. Soc. Bull., 68(5), 979–85 (1989).Google Scholar
  9. 9.
    G. Tomandl, A. Stiegelschmitt, and R. Bonner, “Lowering the Sintering Temperature of PZT Ceramic by Sol-Gel Processing”; pp. 3–173 in Science Of Ceramics Chemical Processing, Edited by L. L. Hench and D. R. Ulrich. John Wiley & Sons, New York, 1986.Google Scholar
  10. 10.
    A. Kato, “Study on Powder Preparation in Japan”, Am. Ceram. Soc. Bull., 66(4), 647–50, 1987.Google Scholar
  11. 11.
    M. P. Pechini, “Method for Preparing Lead and Alkaline-Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor” U. S. PATENT n° 3 330 697,1967.Google Scholar
  12. 12.
    P. A. Lessing, Mixed cation oxide powders via polymeric precursors. Am. Ceram. Soc. Bull. 68 (5) 1002–1007, (1989).Google Scholar
  13. 13.
    R. Gerson and H. Jaffe, Dielectric properties of lead titanate zirconate ceramics at very low frequencies. J. Phys. 31(9) 1615–7, (1960).Google Scholar
  14. 14.
    B. Jaffe, R. S. Roth, S. Marzullo, J. Appl. Phys. 25 809 (1954).CrossRefGoogle Scholar
  15. 15.
    M. A. Zaghete et al, J. Am. Ceram. Soc. 75 225(1995).Google Scholar
  16. 16.
    L. Wu, C.-C. Wei, T.-S. Wu and C.-C. Teng, “Dielectric Properties of Modified PZT Ceramics”, J. Phys. C: Solid State Phys., 16, 2803–12 (1983).CrossRefGoogle Scholar
  17. 17.
    T. Yamamoto, “Optimum Preparation Methods for Piezoelectric Ceramics and their Evaluation”, Ceramic Bull., 71(6), 978–85 (1992).Google Scholar
  18. 18.
    S. C. Chiang, M. Nishioka, F. M. Fulrath and J. A. Pask, “Effect of Processing on Microstructure and Properties of PZT Ceramic”, Ceramic Bull., 60(4), 484–89 (1981).Google Scholar
  19. 19.
    G. H. Haertling, “Piezoelectric and Electrooptic Ceramics”; pp. 3 in Ceramic Materials for Electronics, R. C. Buchanan, Marcel Dekker Ed., New York, (1986), cp.3Google Scholar
  20. 20.
    P. Ari-gur and L. Benguigui, “X-ray Study of the PZT Solid Solutions Near the Morphotropic Phase Transitions”, Solid State Commun., 15(6), 1077–79 (1974).CrossRefGoogle Scholar
  21. 21.
    S. A. Mabud, ”The Morphotropic Phase Boundary in PZT Solid Solutions”, J. Appl. Cryst., 13, 211–16 (1980).CrossRefGoogle Scholar
  22. 22.
    A. Barbulescu, E. Barbulescu and D. Barb, “Phase Transitions in PZT Solid Solutions” Ferroelectrics, 47, 221–30 (1983).CrossRefGoogle Scholar
  23. 23.
    J. F. Femandes Lozano, and C. Moure, “Sinterizacion a Baja Temperatura y Desairolo Micro-Estrutural de Materiales PZT Obtenidos a Partir de Diferentes Precursores”, Bol. Soc. Esp. Ceram. Vidr., 27(1) 17–23 (1988).Google Scholar
  24. 24.
    M. A. Zaghete, CO. Paiva Santos, J.A. Varela, E. Longo and Y. P. Mascarenhas, “Phases Characterization in PZT Obtained from Organic Solutions of Citrates”, J. Am. Ceram. Soc., 75[8] 2088–93 (1992).CrossRefGoogle Scholar
  25. 25.
    S. Kumar, G. L. Messing and W. B. White, “Metal Organic Resin Derived Barium Titanate: I, Formation of Barium Titanium Oxycarbonate Intermediate”, J. Am. Ceram. Soc. 76[3] 617–624 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • J. A. Varela
    • 1
  • M. A. Zaghete
    • 1
  • A. Z. Simões
    • 1
  • M. Cilense
    • 1
  • E. Longo
    • 2
  1. 1.Chemistry Institute — Unesp — Araraquara/SPBrasil
  2. 2.Chemistry Dept — UFSCar/SPBrasil

Personalised recommendations