Thermal Shock Behavior of Sintered Alumina Based Refractories

  • Tatjana D. Volkov-Husović
  • Radmila M. Jančić
  • Zvonimir V. Popović
  • Mihailo Muravljov
  • Dragica Jevtić
  • Tihomir Kovačević

Abstract

In many applications, refractories are subjected to rapid temperature changes, which generate thermal stresses. If these stresses are sufficiently large, they can cause catastrophic crack propagation and resultant failure. Many theoretical treatments and experimental measurements have been presented to describe the thermal shock behavior of brittle ceramic materials. D.P.H. Hasselman1,2 and J. Nakayama3,4 applied fracture mechanic concept to refractory thermal shock problems. For the prediction of the thermal shock behavior of the refractory resistance parameters were proposed. Those parameters are based on thermal and mechanic properties. Two groups of resistance parameters were proposed: fracture and damage resistance parameters. In Table 2. equations for calculation resistance parameters are presented1-4.

Keywords

Furnace Brittle Liner Biot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.P.H. Hasselman, Elastic energy at fracture and surface energy as design criteria for thermal Shock, J. Am.Ceram.Soc. 46(11): 535 (1963).CrossRefGoogle Scholar
  2. 2.
    D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J.Am.Ceram.Soc. 52 (1): 600 (1969).CrossRefGoogle Scholar
  3. 3.
    J. Nakayama, Direct measurements of fracture energies of brittle heterogeneous materials, J.Am.Ceram.Soc. 48(11): 583 (1965).CrossRefGoogle Scholar
  4. 4.
    J. Nakayama, M. Ishizuka, Experimental evidence for thermal shock damage resistance, Amer.Cer.Soc.Bull. 45(7): 666 (1965).Google Scholar
  5. 5.
    P.F. Becher, D. Lewis III, K.R. Carman, A.C. Gonzales, Thermal shock resistance of ceramics: size and geometry effects in quench test, Ceram. Bull. 59(5) (1980).Google Scholar
  6. 6.
    H. Hencke, J.R. Thomas, JR., D.P. H.Hasselman, Role of material properties in the thermall-stress fracture of brittle ceramics subjected to conductive heat transfer, J.Am.Ceram.Soc. 67(6): 393(1984).CrossRefGoogle Scholar
  7. 7.
    W.D. Kingery, Factors affecting thermal stress resistance of ceramic materials, J.Am.Ceram.Soc.38(1):3 (1955).CrossRefGoogle Scholar
  8. 8.
    T.D. Volkov-Husović, R.M. Jančić, Z.V. Popović, “Vzaimozavisimost parametra soprotivleniya razrušeniyu i kritičeskih veličin raznosti temperatur dlya keramičeskih materialov”, Ogneupory u tehničeskaya keramika, 2:22 (1997).Google Scholar
  9. 9.
    T.D. Volkov-Husović, R.M. Jančić, Z.V. Popović, Poredjenje paramétra otpornosti na lom sa kritičnim vrednostima temperaturske razlike kod vatrostalnih materijala odabranog sastava, Metalurgija, 2(3):215 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Tatjana D. Volkov-Husović
    • 1
  • Radmila M. Jančić
    • 1
  • Zvonimir V. Popović
    • 1
  • Mihailo Muravljov
    • 2
  • Dragica Jevtić
    • 2
  • Tihomir Kovačević
    • 2
  1. 1.Faculty of Technology and MetallurgyBelgradeYugoslavia
  2. 2.Faculty of Civil EngineeringInstitute for Materials and StructuresBelgradeYugoslavia

Personalised recommendations