Aerosol Synthesis of Nanostructured Materials

  • Olivera B. Milošević

Abstract

The scientifical and technological interest in nanostructured materials is currently tremendously increasing. 1–3 The basis of this interest is related to the extraordinary properties that powders and materials at the nanometer or subnanometer scale exhibit. 4-6 Such properties result from their structure that distinguish them from conventional polycrystalline materials by the size of the crystallites that compose them as well as a large volume fraction of interface and grain boundaries. The nanostructured materials research efforts emphasize the synthesis routes for the generation of ultrafine powders with control over particle size, shape, composition and morphology as the key issue in advanced materials synthesis.1 The aerosol synthesis route enables the generation of new nanoparticles and nanomaterials either as coatings or powders as single, complex metal oxides, nonoxides or metals by adjusting the precursor chemistry.7 The starting-point of the aerosol synthesis of nanostructured materials is the generation of discrete droplets of the starting solution (aerosol) and control over aerosol decomposition in a high temperature tubular flow reactor.8.9 The successive processes of solvent evaporation, drying, solute precipitation and decomposition proceed through heterogeneous gas-liquid/solid reactions in dispersed system ensuring high surface reaction and limiting any compositional segregation to the droplet level.9 By controlling the precursor solution chemistry, processing parameters and mechanisms of particle formation through either the surface or volume precipitation of droplets it is possible to tailor the powder size, morphology, chemical and phase compositions. The condition for aerosol generation ultrasonically with special emphasis on the various particle morphology synthesis is reviewed in this paper. The importance to model the phenomenon of mass and heat transfer occurring during the evaporation/drying stage is discussed from the viewpoint of the parameters leading to a certain particle morphology. It is demonstrated that aerosol synthesis of nanostructures can be realized in a controlled manner by adjusting the aerosol droplet size and precursor chemistry.

Keywords

Nickel Crystallization Sulphide Zirconia Ferrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gleiter, Materials with ultrafine microstructures: retrospectives and perspectives, Nanostr. Mater. 1:1 (1992).CrossRefGoogle Scholar
  2. 2.
    R.W. Siegel, Nanostructured materials-mind over matter, Nanostr. Mater. 3:121 (1994).CrossRefGoogle Scholar
  3. 3.
    M.N. Rittner and T. Abraham, The nanostructured materials industry, Am.Ceram.Soc.Bull. 76(6): 51 (1997).Google Scholar
  4. 4.
    L.E. Brus, Structure and electronic states of quantum semiconductor crystallites, Nanostr. mater. 1:71 (1992).CrossRefGoogle Scholar
  5. 5.
    R.D. Shull and L.H. Benett, Nanocomposite magnetic materials, Nanostr. mater. 1:83 (1992). 83-88CrossRefGoogle Scholar
  6. 6.
    R. Riedel, H-J. Kleebe, H. Schonfelder and F. Aldinger, A covalent micro/nano composite resistant to high-temperature oxidation, Nature 374:526(1995).CrossRefGoogle Scholar
  7. 7.
    A. Gurav, T. Kodas, T. Pluym and Y. Xiong, Aerosol processing of materials, Aerosol Sci.Techn. 19: 411 (1993).CrossRefGoogle Scholar
  8. 8.
    G. L. Messing, S.-C. Zhang and G. V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J.Am.Ceram. Soc. 76(11): 2707 (1993).CrossRefGoogle Scholar
  9. 9.
    O. Milošević and M.M. Ristić, Spray pyrolysis as an advanced powder metallurgy method, in: Proceedings of the International Conference on Powder Metallurgy, RoPM 96, G. Arghir ed., Editura U.T.Pres, Cluj-Napoca, Romania (1996).Google Scholar
  10. 10.
    H. Hahn and R.S. Averback, High temperature mechanical properties of nanostructured ceramics, Nanostructured mater. 1: 95 (1992).CrossRefGoogle Scholar
  11. 11.
    R. Wiesendanger, Recent advances in nanostructural investigations and modifications of solid surfaces by scanning probe methods, Japan J. Appl. Phys. 1, 34 (6B): 3388 (1995)CrossRefGoogle Scholar
  12. 12.
    V. Provenzano, N.P. Louat, M.A. Imam and K. Sadananda, Ultrafine superstrength materials, Nanostructured mater 1:89 (1992).CrossRefGoogle Scholar
  13. 13.
    H.E. Schaefer, R. Wurschum, T. Gessmann, G. Stockl, P. Scharwaechter, W. Frank, R.Z. Valiev, H. J. Fecht and C. Moelle, Diffusion and free volumes in nanocrystalline Pd, Nanostr. Mater. 6:869 (1995).CrossRefGoogle Scholar
  14. 14.
    N. Wang, Z. Wang, K.T. Aust and U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials, Acta. Metall. Mater. 43(2):519 (1995).CrossRefGoogle Scholar
  15. 15.
    J.C. Parker and R.W. Siegel, Optical determination of the oxygen stoichiometry of nanophase metal-oxide materials, Nanostr. Mater. 1: 53 (1992).CrossRefGoogle Scholar
  16. 16.
    P. Mateazzi, G.L. C and A. Mocellin, Ceram. Intern. 23: 39 (1997).CrossRefGoogle Scholar
  17. 17.
    Ph. Colomban, Gel technology in ceramics, Ceram. Intern. 15:23 (1989).CrossRefGoogle Scholar
  18. 18.
    R.C. Flagan and M.M. Lunden, Particle structure control in nanoparticle synthesis from the vapor phase, Mat.Sci.Eng. A-Structural Materials Properties, Microstructure and Processing, 204(1-2):113 (1995).CrossRefGoogle Scholar
  19. 19.
    B. J. Ingebrethsen, E. Matijević and R.E. Partch, Preparation of uniform colloidal dispersions by chemical reactions in aerosols, J.Coll. Interf. Sci. 95(1):228 (1983).CrossRefGoogle Scholar
  20. 20.
    O. Milošević, V. Gagić, J. Vodnik, A. Mitrović, Lj. Karanovic, B. Stojanović and Lj. ŽIvković, Synthesis and deposition of ZnO based particles by aerosol spray pyrolysis, Thin Solid Films 296:44 (1997).CrossRefGoogle Scholar
  21. 21.
    M. Langlet and J.C. Joubert, The pyrosol process or the pyrolysis of an ultrasonically generated aerosol, in: Chemistry of Advanced Materials, C.N.R. Rao ed., Blackwell scientific Publications, (1992).Google Scholar
  22. 22.
    T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward and T.T. Kodas, Solid silver particles production by spray pyrolysis, J.Aerosol Sci. 24(3):383 (1993).CrossRefGoogle Scholar
  23. 23.
    T. Gonzales-Carreno, M.P. Morales, M. Gracia and C.J. Serna, Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis, Mater.Lett. 18: 151 (1993).CrossRefGoogle Scholar
  24. 24.
    S-Y. Cho, J-H. Lee and S-J. Park, Preparation of spherical SnO2 powders by ultrasonic spray pyrolysis, J.Am.Ceram.Soc. 76(3): 777 (1993).CrossRefGoogle Scholar
  25. 25.
    T. Fukui, T. Oobuchi, Y. Ikuhara, S. Ohara and K. Kodera, Synthesis of (La,Sr)MnO3 —YSZ composite particles by spray pyrolysis, J.Am.Ceram.Soc. 80(1):261 (1997)CrossRefGoogle Scholar
  26. 26.
    Y. Chang, S.B. Park and Y.W. Kang, Preparation of high surface area nanophase particles by low pressure spray pyrolysis, Nanostr. Mater. 5:777 (1995).CrossRefGoogle Scholar
  27. 27.
    Q. Li, C.M. Sorensen, K.J. Klabunde and G.C. Hadjipanayis, Aerosol spray pyrolysis synthesis of magnetic manganese ferrite particles, Aerosol Sci. Techn. 19:453 (1993).CrossRefGoogle Scholar
  28. 28.
    Y. Senzaki, J. Caruso, M.J. Hampden-Smith, T.T. Kodas and L.M. Wang, Preparation of strontium ferrite particles by spray pyrolysis, J. Amer.Ceram.Soc. 78(11):2973 (1995).CrossRefGoogle Scholar
  29. 29.
    U. Schmatz, G. Delabouglise and M. Labeau, Electrical and microstructural studies of SnO2 ceramics obtained by tin sulfate pyrolysis, J.Electrochem.Soc. 141(11):3254 (1994).CrossRefGoogle Scholar
  30. 30.
    G.V. Jayanthi, S.C. Zhang and G.L. Messing, Modeling of solid particle formation during solution aerosol thermolysis, Aerosol Sei. Techn. 19:478 (1993).CrossRefGoogle Scholar
  31. 31.
    Y. Xiong and T.T. Kodas, Droplet evaporation and solute precipitation during spray pyrolysis, J.Aerosol Sci. 24(7):893 (1993).CrossRefGoogle Scholar
  32. 32.
    O. Miloše vić and V. Gagic, Powder synthesis by the spray pyrolysis method: particle morphology as a function of aerosol droplet size and aerosol droplet number density, Sci.Sint. 28:71 (1996).Google Scholar
  33. 33.
    N. Nikolić, L. Mančić and O. Milošević, The influence of aerosol droplet number density on aerosol droplet coalescence in powders synthesized by the spray pyrolysis method, Sci.Sint. 29(3):171 (1997)Google Scholar
  34. 34.
    L. Mančić and O. Milošević, The influence of droplet coalescence on particle morphology of powders derived by aerosol reactions, J.Minning Metall. 34(1-2)B:37 (1998).Google Scholar
  35. 35.
    P. Odier, B. Dubois, C. Clinard, H. Stroumbos, and Ph. Monod, Processing of ceramic powders by the spray pyrolysis method; influence of the precursors, examples of zirconia and YBa 2Cu3 O7, in: Ceramic Trans — Ceramic Powder Science III, G.L. Messing, S. Hirano, H. Hausner ed., American Ceramic Society, Westerville, OH, (1990).Google Scholar
  36. 36.
    O. Milošević, M. Mirković and D. Uskoković, Characteristics and formation mechanism of BaTiO3 powders prepared by twin-fluid and ultrasonic spray-pyrolysis method, J. Am. Ceram. Soc. 79(6): 1720(1996).CrossRefGoogle Scholar
  37. 37.
    Y. Xiong, S.W. Lyong and T.T. Kodas, Volatile metal oxide evaporation during aerosol decomposition, J.Am.Ceram.Soc. 78(9): 2490 (1995).CrossRefGoogle Scholar
  38. 38.
    T.T. Kodas, Generation of complex metal oxides by aerosol processes: superconducting ceramic particles and films, Angew. Chem. Adv. Mater. 101(6):814 (1989).CrossRefGoogle Scholar
  39. 39.
    M. Labeau, B. Gautheron, F. Cellier, M. Vallet-Regi, E. Garcia and M. Gonzales Calbet, Pt nanoparticles dispersed on SnO2 thin films: a microstructural study, J.Solid State Chem. 102:434 (1993).CrossRefGoogle Scholar
  40. 40.
    M. Aizawa, K. Itanani, F.S. Howell, A. Kishioka and M. Kinoshita, Formation of porous calcium phosphate films on partially stabilized zirconia substrates by the spray pyrolysis technique, J.Mater.Sci. 30:4936 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Olivera B. Milošević
    • 1
  1. 1.Institute of Technical SciencesSerbian Academy of Sciences and ArtsBelgradeYugoslavia

Personalised recommendations