Skip to main content

Role of Reactive Nitrogen Species in Asbestos-Induced Pleuro-Pulmonary Injury

  • Chapter
Acute Respiratory Distress Syndrome

Part of the book series: NATO ASI Series ((NSSA,volume 297))

  • 237 Accesses

Abstract

Asbestos is a generic term for a group of naturally-occurring, hydrated fibrous silicates. There are two main mineralogie varieties of asbestos minerals: amphiboles (which have a stiff and brittle texture) and serpentine (which has a softer, more flexible texture and a wavy configuration). Three varieties of asbestos have been used commercially in North America and Europe for most of this century: chrysotile (a serpentine asbestos), crocidolite and amosite (both amphiboles). Asbestos fibers have long been a focus of scientific interest because of their capacity to induce pleural and pulmonary diseases characterized by fibrosis (parietal pleural plaques, visceral pleural fibrosis and asbestosis) andJor neoplasia (malignant pleural mesothelioma and bronchogenic carcinoma).1 Although all commercial varieties of asbestos are capable of inducing these diseases, there has been considerable scientific debate regarding the relative potential of the different fiber types (chrysotile vs. amphiboles) to induce pleuro-pulmonary injury.2,3 The pathogenesis of asbestos-related disorders is complex, but there is evidence implicating cytokines and reactive oxygen species (ROS) including superoxide anion (02*), H2O2 and hydroxyl radical (OH*) in the induction of asbestos-induced cellular injury.1-5 The putative role of ROS in mediating asbestos-related cytotoxicity is predicated on the notion that asbestos fibers induce cellular injury via O2*-driven, iron-catalyzed Haber-Weiss (Fenton) reactions that generate the OH* radical.5 Studies demonstrating that the injurious effects of asbestos can be abrogated by scavengers of ROS such as superoxide dismutase, mannitol and catalase are supportive of this hypothesis.6-9 However, while Fenton reactions may explain some of the actions of crocidolite (which is an iron-containing silicate), they cannot account for those of chrysotile (which is a magnesium-containing silicate whose chemical structure is devoid of iron).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Kagan, Current perspectives in asbestosis, Ann. Allergy 54:464, 1985.

    PubMed  CAS  Google Scholar 

  2. M. Kuwahara and E. Kagan, The mesothelial cell and its role in asbestos-induced pleural injury, Int J. Exp. Pathol. 76:163, 1995.

    PubMed  CAS  Google Scholar 

  3. B.T. Mossman, D.W. Kamp, and S.A. Weitzman, Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers, Cancer Invest. 14:466, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. A.R. Brody, Asbestos-induced lung disease, Environ. Health Perspect. 100:21, 1993.

    PubMed  CAS  Google Scholar 

  5. M.B. Grisham. Reactive Metabolites of Oxygen and Nitrogen in Biology and Medicine, R.G. Landes Co., Austin, TX (1992).

    Google Scholar 

  6. B.T. Mossman, J.P. Marsh, A. Sesko, et al., Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis, Am. Rev. Respir. Dis. 141:1266, 1990.

    PubMed  CAS  Google Scholar 

  7. M.A. Shatos, J.M. Doherty, J.P. Marsh, et al., Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species, Environ. Res. 44:103, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. V.A. Vallyathan, J.F. Mega, X. Shi, et al., Enhanced generation of free radicals from phagocytes induced by mineral dusts, Am. J. Respir. Cell Mol. Biol., 6:404, 1992.

    PubMed  CAS  Google Scholar 

  9. V.C. Broaddus, L. Yang, L.M. Scavo, et al., Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species, J. Clin. Invest. 98:2050, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. G. Thomas, T. Ando, K. Verma, et al., Asbestos fibers and interferon-γ up-regulate nitric oxide production in rat alveolar macrophages, Am. J. Respir. Cell Mol. Biol. 11:707, 1994.

    PubMed  CAS  Google Scholar 

  11. M. Kuwahara, M. Kuwahara, K.E. Bijwaard, et al., Mesothelial cells produce a chemoattractant for fibroblasts: role of fibronectin, Am. J. Respir. Cell Mol. Biol. 5:256, 1991.

    PubMed  CAS  Google Scholar 

  12. N. Choe, S. Tanaka, D.R. Hemenway, et al, Pleural macrophage recruitment and activation in asbestos-induced pleural injury, Environ. Health Perspect. 105:(in press), 1997.

    Google Scholar 

  13. G. Thomas and P.W. Ramwell, Vasodilatory properties of mono-L-arginine-containing compounds, Biochem. Biophys. Res. Commun., 154:332, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. C.J. Lowenstein, C.S. Glatt, D.S. Bredt, et al., Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme, Proc. Natl Acad. Sci. USA, 89:6711, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. K.E. Driscoll, J.M. Carter, B.W. Howard, et al., Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black, Toxicol Appl Pharmacol. 136:372, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. M.W. Owens and M.B. Grisham, Nitric oxide synthesis by rat pleural mesothelial cells: induction by cytokines and lipopolysaccharide, Am. J. Physiol. 265:L110, 1993.

    PubMed  CAS  Google Scholar 

  17. A.R. Gibbs, Role of asbestos and other fibres in the development of diffuse malignant mesothelioma, Thorax 45:649, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. I.Y. Haddad, G. Pataki, P. Hu, et al., Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury, J. Clin. Invest. 94:2407, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. K.M. Setoguchi, M. Takeya, T. Akaike, et al., Expression of inducible nitric oxide synthase and its involvement in pulmonary granulomatous inflammation in rats, Am. J. Pathol. 149:2005, 1996.

    PubMed  CAS  Google Scholar 

  20. I.Y. Haddad, S. Zhu, J. Crow, et al., Inhibition of alveolar type II cell ATP synthesis and surfactant synthesis by nitric oxide, Am. J. Physiol. 270:L898, 1996.

    PubMed  CAS  Google Scholar 

  21. J. Marcinkiewicz, A. Grabowska, and B. Chain, Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages, Eur. J. Immunol. 25:947, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. L.G. Lund and A.E. Aust, Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in pϕ174 RFI DNA, Carcinogenesis, 13:637, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. C.-C. Chao, S.-H. Park, and A.E. Aust, Participation of nitric oxide and iron in te oxidation of DNA in asbestos-treated human lung epithelial cells, Arch. Biochem. Biophys. 326:152, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. R. Radi, J.S. Beckman, R.J. Bridges, et al., Peroxynitrite oxidation of sulfhydryls, J. Biol. Chem. 266:4244, 1991.

    PubMed  CAS  Google Scholar 

  25. M.L. Bauer, J.S. Beckman, R.J. Bridges, et al., Peroxynitrite inhibits sodium uptake in rat colonic membrane vesicles, Biochem. Biophys. Acta 1104:87, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. P. Hu, H. Ischiropoulos, J.S. Beckman, et al., Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells, Am. J. Physiol. 266:L628, 1994.

    PubMed  CAS  Google Scholar 

  27. C. Szabö, C. Saunders, M. O’Connor, et al., Peroxynitrite causes energy depletion and increases permeability via activation of poly (ADP-ribose) synthetase in pulmonary epithelial cells, Am. J. Respir. Cell Mol. Biol. 16:105, 1997.

    PubMed  Google Scholar 

  28. H.Y. Dong, A. Buard, F. Lévy, et al., Synthesis of poly (ADP-ribose) in asbestos treated rat pleural mesothelial cells in culture, Mut. Res. 331:197, 1995.

    CAS  Google Scholar 

  29. H. Ford, S. Watkins, K. Reblock, et al., The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis, J. Pediatr. Surg. 32:275, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Tanaka, S., Choe, N., Hemenway, D.R., Matalon, S., Kagan, E. (1998). Role of Reactive Nitrogen Species in Asbestos-Induced Pleuro-Pulmonary Injury. In: Matalon, S., Sznajder, J.L. (eds) Acute Respiratory Distress Syndrome. NATO ASI Series, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8634-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8634-4_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45830-9

  • Online ISBN: 978-1-4419-8634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics