Molecular biology of lung Na+ absorption

  • Pascal Barbry
Part of the NATO ASI Series book series (NSSA, volume 297)


A transcellular sodium reabsorption through high-resistance epithelia: couples passive electrodiffusion of sodium through the apical membrane, and active extrusion of intracellular sodium by basolateral Na+/K+/ATPase, and generates a vectorial transcellular sodium transport. In lung, this mechanism participates to the correct hydration of the luminal compartment. The apical electrodiffusion, which corresponds to the limiting step of transcellular transport, is mediated by an ionic channel, highly selective for sodium and lithium over potassium. This channel is blocked by the diuretics amiloride and triamterene. Molecular identification of the proteins involved in amiloride-sensitive sodium permeation has been achieved. Three homologous subunits, entitled αENaC, βENaC, and γENaC (for epithelial Na+ channel), correspond to the pore-forming subunits. They are distinct from voltage-dependent Na+ channels. Instead, they constitute with more than 20 homologous proteins, a new gene super-family of ionic channels. This family can be divided into three main subfamilies: (1) channels involved in vectorial transport of electrolytes, such as ENaC; (2) degenerins from Caenorhabditis elegans, such as DEG-1, MEC-4, MEC-10, UNC-8 and UNC-105, which are likely to correspond to mechanosensitive channels; (3) ligand-gated channels, such as FaNaC (for FMRFamide Na+ channel), an ionotropic receptor for the cardioexcitatory peptide Phe-Met-Arg-Phe-NH2 (FMRFamide) found in Helix aspersa nervous system, or ASIC (for acid sensing ionic channel), a mammalian H+-gated channel selective for monovalent and divalent cations. The physiological importance of the epithelial Na+ channel is highlighted by identification of mutations into aENaC, pENaC, and γENaC genes in families affected by pseudohypoaldosteronism type I (PHA1) or hereditary low-renin hypertension (Liddle’s syndrome).


Helix Aspersa ENaC Subunit Homologous Subunit Pseudohypoaldosteronism Type ENaCs Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Canessa, C, L. Schild, G. Buell, B. Thorens, I. Gautschi, J. D. Horisberger and B. C. Rossier, 1994, Amiloride-sensitive epithelial sodium channel is made of three homologous subunits. Nature 367:463–467.PubMedCrossRefGoogle Scholar
  2. Chalfie, M., M. Driscoll and M. Huang, 1993, Degenerin similarities. Nature 361:504.PubMedCrossRefGoogle Scholar
  3. Champigny, G., N. Voilley, E. Lingueglia, V. Friend, P. Barbry and M. Lazdunski, 1994, Regulation of expression of the lung amiloride-sensitive Na+ channel by steroid hormones. EMBOJ. 13:2177–2181.Google Scholar
  4. Farman, N., C. R. Talbot, R. Boucher, M. Fay, C. Canessa, B. Rossier and J.-P. Bonvalet, 1997, Noncoordinated expression of alpha-, beta-, and gamma-subunit mRNAs of epithelial Na+ channel along rat respiratory tract. Am. J. Physiol. 272:C131–C141.PubMedGoogle Scholar
  5. Hummler, E., P. Barker, J. Gatzy, F. Beermann, C. Verdumo, A. Schmidt, R. Boucher and B. C. Rossier, 1996, Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nature Genet. 12:325–328.PubMedCrossRefGoogle Scholar
  6. Lingueglia, E., G. Champigny, M. Lazdunski and P. Barbry, 1995. Cloning of the amiloridesensitive FMRFamide peptide-gated sodium channel. Nature 378: 730–733.PubMedCrossRefGoogle Scholar
  7. Lingueglia, E., S. Renard, R. Waldmann, N. Voilley, G. Champigny, H. Plass, M. Lazdunski and P. Barbry, 1994, Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone. J. Biol. Chem. 269:13736–13739.PubMedGoogle Scholar
  8. Lingueglia, E., N. Voilley, R. Waldmann, M. Lazdunski and P. Barbry, 1993, Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 318:95–99.PubMedCrossRefGoogle Scholar
  9. Matalon, S., D. J. Benos and R. M. Jackson, 1996, Biophysical and molecular properties of amiloride-inhibitable Na+ channels in alveolar epithelial cells. Am. J. Physiol. 271:L1–L22.PubMedGoogle Scholar
  10. Matsushita, K., P. B. MacCray, Jr, R. D. Sigmund, M. J. Welsh and J. B. Stokes, 1996, Localization of epithelial sodium channel subunit mRNAs in adult rat lung by in situ hybridization. Am. J. Physiol. 271:L332–L339.PubMedGoogle Scholar
  11. Matthay, M. A., H. G. Folkesson, A. S. Verkman, 1996, Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am. J. Physiol. 270 (Lung Cell. Mol. Physiol. 14): L487–L503.PubMedGoogle Scholar
  12. O’Brodovich, H., C. Canessa, J. Ueda, B. Rafii, B. C. Rossier and J. Edelson, 1993, Expression of the epithelial Na+ channel in the fetal rat lung. Am. J. Physiol. 265:C491–C496.PubMedGoogle Scholar
  13. Renard, S., E. Lingueglia, N. Voilley, M. Lazdunski and P. Barbry, 1994, Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J. Biol. Chem. 269:12981–12986.PubMedGoogle Scholar
  14. Renard, S., N. Voilley, F. Bassilana, M. Lazdunski and P. Barbry, 1995, Localization and regulation by steroids of the α, α β and γ subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pflügers Arch. — Eur. J. Physiol. 430:299–307.CrossRefGoogle Scholar
  15. Tchepichev, S., J. Ueda, C. Canessa, B. C. Rossier and H. O’Brodovich, 1995, Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am. J. Physiol. 269:C805–C812.PubMedGoogle Scholar
  16. Voilley, N., F. Bassilana, C. Mignon, S. Merscher, M.-G. Mattéi, G. F. Carle, M. Lazdunski and P. Barbry, 1995, Cloning, chromosomal localization and physical linkage of the β and γ subunits of the human epithelial amiloride-sensitive sodium channel. Genomics 28:560–565.PubMedCrossRefGoogle Scholar
  17. Voilley, N., A. Galibert, F. Bassilana, S. Renard, E. Lingueglia, S. Le Nechet, G. Champigny, P. Hofman, M. Lazdunski and P. Barbry, 1997, The amiloride-sensitive Na+ channel: from primary structure to function,. Comp. Biochem. Physiol. 118(2): 193–200.CrossRefGoogle Scholar
  18. Voilley, N., E. Lingueglia, G. Champigny, M.-G. Mattei, R. Waldmann, M. Lazdunski and P. Barbry, 1994, The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc. Natl. Acad. Sci. USA 91:247–251.PubMedCrossRefGoogle Scholar
  19. Waldmann, R., G. Champigny, F. Bassilana, C. Heurteaux and M. Lazdunski, 1997, A proton gated cation channel involved in acid sensing. Nature 386:173–177.PubMedCrossRefGoogle Scholar
  20. Waldmann, R., G. Champigny, F. Bassilana, N. Voilley and M. Lazdunski, 1995, Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J. Biol. Chem. 270:27411–27414.PubMedCrossRefGoogle Scholar
  21. Waldmann, R., G. Champigny, N. Voilley, I. Lauritzen and M. Lazdunski, 1996, The Mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in C. elegans. J. Biol. Chem. 271:10433–10436.Google Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Pascal Barbry
    • 1
  1. 1.Institut de Pharmacologic Moléculaire et CellulaireValbonneFrance

Personalised recommendations