Skip to main content

Mechanical Ventilation in Ards: Good or Bad News?

  • Chapter
Acute Respiratory Distress Syndrome

Part of the book series: NATO ASI Series ((NSSA,volume 297))

  • 239 Accesses

Abstract

Despite an enormous progress in the technology of ventilators, the improvement in the diagnostic tools and in pharmacological treatment the Adult Respiratory Distress Syndrome (ARDS) is characterized by high mortality rate [1,2,3]. Although necessary, mechanical ventilation is commonly considered to be one of the main causes of further lung injury to diseased lungs, reducing the possibility of recovery. For this reason the iatrogenic effect of mechanical ventilation has been named ventilator-associated lung injury (VALI). VALI is the consequence of a sustained increase in alveolar pressure (‘barotrauma’), alveolar distension (‘volotrauma’) or alveolar collapse and decollapse with cycling during inspiration and expiration (‘shear stress trauma’). Recent clinical studies suggest that the optimal ventilatory treatment should combine the use of a reduced tidal volume with consequent permissive hypercapnia to reduce volotrauma, low inspiratory pressures to reduce barotrauma and an adequate level of positive end-expiratory pressure to recruit as much collapsed parenchyma as possible to reduce shear stress trauma [4,5]. However, different etiologies leading to ARDS and time may produce different alterations in the lung structure with consequent different responses to the ventilatory treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewandowski K, Metz J, Deutschmann C, Preib H, Khufen R, Artigas A, Falke KJ (1995) Incidence, severity and mortality of acute respiratory failure in Berlin, Germany. Am J Respir Crit Care Med 107: 1121–1125

    Google Scholar 

  2. Vasilyev S, Schaap RN, Mortensen JD (1995) Hospital survival rates of patients with acute respiratory failure in modern respiratory intensive care units: an international, multicenter, prospective survey. Chest 107: 1083–1088

    Article  PubMed  CAS  Google Scholar 

  3. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Le Gall JR, Morris A, Spragg R (1994) The American-European Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824

    PubMed  CAS  Google Scholar 

  4. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22: 1568–1578

    Article  PubMed  CAS  Google Scholar 

  5. Amato MBP, Barbas CSV, Medeiros DM, Lorenzi FG, Kairalla RA, Deheinzelin D, Magaldi RB, De Carvalho CRR (1996) Improved survival in ARDS: beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (abstract)

    Google Scholar 

  6. Manning HL (1994) Peak airway pressure: why the fuss? Chest 105: 242–247

    Article  PubMed  CAS  Google Scholar 

  7. Kolobow T, Moretti MP, Fumagalli R, Mascheroni D, Prato P, Chen V, Joris M (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315

    PubMed  CAS  Google Scholar 

  8. Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 89:956–961

    Google Scholar 

  9. de Latorre F, Tomasa A, Klamburg J (1977) Incidence of pneumothorax and pneumomediastinum in patients with aspiration requiring ventilatory support. Chest 72:141–144

    Article  PubMed  Google Scholar 

  10. Peterson G, Baier H (1983) Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med 11:67–71

    Article  Google Scholar 

  11. Shanapp LM, Chin DP, Szaflasrski N, Matthay MA (1995) Frequency and importance of barotrauma in 100 patients with acute lung injury. Crit Care Med 23:272–278

    Article  Google Scholar 

  12. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  13. Dreyfuss D, Soler P, Basset G, Saumon G (l988) High inflation pressure pulmonary edema. respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    Google Scholar 

  14. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203

    PubMed  CAS  Google Scholar 

  15. Dreyfuss D, Soler P, Saumon G (1995) Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 151:1568–1675

    PubMed  CAS  Google Scholar 

  16. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:569–608

    Google Scholar 

  17. Muscedere JC, Mullen JBM, Gan K, Slutsky AS (1994) Tidal volume at low pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    PubMed  CAS  Google Scholar 

  18. Slutsky AS (1993) Mechanical ventilation. Chest 104:1833–1859. Also, (1994) Intensive Care Med 20:64-79

    Article  PubMed  CAS  Google Scholar 

  19. Gattinoni L, Mascheroni D, Torresin A, Marcolin R, Fumagalli R, Vesconi S, Rossi GP, Baglioni S, Bassi F (1986) Morphological response to positive end-expiratory pressure in acute respiratory failure. Intensive Care Med 12:137–142

    Article  PubMed  CAS  Google Scholar 

  20. Tagliabue M, Casella TC, Zincone GE, Fumagalli R, Salvini E (1994) CT and chest radiography in the evaluation of adult respiratory distress syndrome. Acta Radiologica 35:230–234

    PubMed  CAS  Google Scholar 

  21. Brismar B, Hedenstierna G, Lundquist (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62:422–428

    Article  PubMed  CAS  Google Scholar 

  22. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13

    PubMed  CAS  Google Scholar 

  23. Gattinoni L, Bombino M, Pelosi P, Lissoni A, Pesenti A, Fumagalli R, Tagliabue M (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271:1772–1779

    Article  PubMed  CAS  Google Scholar 

  24. Rouby JJ, Lhem E, Martin de Lassale E, Poete P, Bodin L, Finet JF, Callard P, Viars P (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19:383–389

    Article  PubMed  CAS  Google Scholar 

  25. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  26. Crotti S, Mascheroni D, Pelosi P, Valenza F, Lissoni A, Gattinoni L (1997) The inspiratory plateau pressure level affects end-expiratory lung inflation and densities during pressure controlled ventilation: a CT scan study in ARDS patients. Am J Respir Crit Care Med 155: A88 (abstract)

    Google Scholar 

  27. Crotti S, Mascheroni D, Pelosi P, Tubiolo D, Chiumello D, Gattinoni L (1997) Distribution of lung inflation and tidal volume during pressure controlled ventilation in ARDS: effects of PEEP. Am J Respir Crit Care Med 155: A87 (abstract).

    Google Scholar 

  28. Pelosi P, Crotti S, Brazzi L, Gattinoni L (1996) Computed tomography in adult respiratory distress syndrome: what has it taught us? Eur Respir J 9:1055–1062

    Article  PubMed  CAS  Google Scholar 

  29. Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive endexpiratory pressure. Am J Respir Crit Care Med 152:532–537

    Google Scholar 

  30. Pelosi P, Croci M, Chiumello D, Pedoto A, Gattinoni L (1996) Direct or indirect lung injury differently affects respiratory mechanics during acute respiratory failure. Intensive Care Med 22: 105 (abstract)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Pelosi, P. (1998). Mechanical Ventilation in Ards: Good or Bad News?. In: Matalon, S., Sznajder, J.L. (eds) Acute Respiratory Distress Syndrome. NATO ASI Series, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8634-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8634-4_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45830-9

  • Online ISBN: 978-1-4419-8634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics