Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 297))

  • 247 Accesses

Abstract

Tracheal gas insufflation (TGI) is the continuous or phasic insufflation of fresh gas into the central airways for the purpose of improving the efficiency of alveolar ventilation andJor minimizing the ventilatory pressure requirement. TGI usually employs modest flow rates of 2 to 15 L/min. Two mechanisms are responsible for improving the efficacy of conventional tidal breaths during TGI (1-3). First, fresh gas introduced by the catheter during expiration can dilute the CO2 stored in the series (anatomic) deadspace compartment proximal to its tip. Second, at high catheter flow rates, turbulence generated at the tip of the catheter can enhance gas mixing in regions distant to the catheter tip, thereby contributing to carbon dioxide removal. TGI is unlikely to be very effective when the alveolar as opposed to the series compartment dominates the total physiologic deadspace; yet at small tidal volumes (whenever series deadspace is especially high) or when alveolar ventilation is very low, TGI should be helpful (10). Many investigators have attempted to combine flow through an intratracheal catheter with conventional mechanical ventilation (CMV) techniques (5-13) as well as high frequency jet (14) and oscillatory (15) ventilation. This approach takes advantage of improved ventilatory efficiency due to anatomic deadspace washout as well as enhanced mixing due to catheter turbulence generated to permit reduction in tidal volume (VT)(11). Combining small tidal volumes with constant flow ventilation, delivers fresh gas further down the airways from the catheter site above the carina, bypassing the high-resistance central zone to achieve eucapnia at low flow rates (16). Furthermore, fresh gas introduced by the catheter improves the “efficacy” of each tidal breath.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ. Effect of catheter flow direction on CO2 removal during tracheal gas insufflation in dogs. J Appl Physiol 1993;75:1238–1246.

    PubMed  CAS  Google Scholar 

  2. Slutsky AS, Watson J, Leith DE, Brown R. Tracheal insufflation of O2 (TRIO) at low flow rates sustains life for several hours. Anesthesiology 1985;63:278–286.

    Article  PubMed  CAS  Google Scholar 

  3. Nahum A, Ravenscraft SA, Adams AB, Marini JJ. Distal effects of tracheal gas insufflation: changes with catheter position and oleic acid lung injury. J Appl Physiol 1996;81:1121–1127.

    PubMed  CAS  Google Scholar 

  4. Nahum A, Shapiro RS, Ravenscraft SA, Adams AB, Marini JJ. Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am J Respir Crit Care Med 1995;152:489–495.

    PubMed  CAS  Google Scholar 

  5. Jonson B, Similowski T, Levy P, Viires N, Pariente R. Expiratory flushing of airways: A method to reduce deadspace ventilation. Eur Respir J 1990;3:1202–1206.

    PubMed  CAS  Google Scholar 

  6. Gilbert J, Larsson A, Smith B, Bunegin L. Intermittent-flow expiratory ventilation (IFEV): Delivery technique and principles of action — a preliminary communication. 1991;25:451–456.

    CAS  Google Scholar 

  7. Burke WC, Nahum A, Ravenscraft SA, et al. Modes of tracheal gas insufflation. Comparison of continuous and phase-specific gas injection in normal dogs. Am Rev Respir Dis 1993;148:562–568.

    PubMed  CAS  Google Scholar 

  8. Ravenscraft SA, Shapiro R, Nahum A, et al. Tracheal gas insufflation: Catheter effectiveness is determined by expiratory flush volume. Am J Respir Crit Care Med 1996;153:1817–1824.

    PubMed  CAS  Google Scholar 

  9. Kolobow T, Powers T, Mandava S, et al. Intratracheal pulmonary ventilation (ITPV): control of positive end-expiratory pressure at the level of the carina through the use of a novel ITPV catheter design. Anesth Analg 1994;78:455–461.

    Article  PubMed  CAS  Google Scholar 

  10. Müller E, Kolobow T, Mandava S, et al. On how to ventilate lungs as small as 12% of normal. Intratracheal pulmonary ventilation (ITPV). A new mode of pulmonary ventilation (abstract). Am Rev Resp Dis 1991; 143:A693.

    Google Scholar 

  11. Sznajder JI, Becker CJ, Crawford GP, Wood LDH. Combination of constant flow and continuous positive pressure ventilation in canine pulmonary edema. J. Appl. Physiol. 1989;67:817–823.

    PubMed  CAS  Google Scholar 

  12. Nahum A, Ravenscraft SA, Nakos G, et al. Tracheal gas insufflation during pressurecontrol ventilation. Effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 1992;146:1411–1418.

    PubMed  CAS  Google Scholar 

  13. Lehnert BE, Oberdoerster EG, Slutsky AS. Constant-flow ventilation of apneic dogs. J Appl Physiol 1982;53:483–489.

    PubMed  CAS  Google Scholar 

  14. Huafeng W, Shi-Ao J, Zhicheng M, Haosheng B, Xiuyun B. Experimental study of high-frequency two-way jet ventilation. Crit Care Med 1992;20:420–423.

    Article  Google Scholar 

  15. Dolan S, Derdak S, Solomon D, Farmer C, Johanningman J, Gelineau J. Tracheal gas insufflation combined with high-frequency oscillatory ventilation. Crit Care Med 1996;24:458–465.

    Article  PubMed  CAS  Google Scholar 

  16. Venegas JG, Yamada Y, Hales CA. Contributions of diffusion jet flow and cardiac activity to regional ventilation in CFV. J Appl Physiol 1991;71:1540.

    PubMed  CAS  Google Scholar 

  17. Nahum A, Sznajder JI, Solway J, Wood LDH, Schumacker PT. Pressure, flow, and density relationships in airway models during constant-flow ventilation. J Appl Physiol 1988;64:2066.

    PubMed  CAS  Google Scholar 

  18. Nahum A, Chandra A, Niknam J, Ravenscraft SA, Adams AB, Marini JJ. Effect of tracheal gas insufflation on gas exchange in canine oleic acid-induced lung injury. Crit Care Med 1995;23:348–356.

    Article  PubMed  CAS  Google Scholar 

  19. Nahum A, Burke W, Ravenscraft SA, et al. Lung mechanics and gas exchange during pressure-controlled ventilation in dogs: augmentation of CO2 elimination by an intratracheal catheter. Am Rev Respir Dis 1992;146:965–973.

    PubMed  CAS  Google Scholar 

  20. Eckmann DM, Gavriely N. Intra-airway CO2 distribution during airway insufflation in respiratory failure. J Appl Physiol 1995;78:546–554.

    PubMed  CAS  Google Scholar 

  21. Gavriely N, Eckmann DM, Grotberg JB. Intra-airway s gas transport during highfrequency chest vibration with tracheal insufflation in dogs. J Appl Physiol 1995;79:243–250.

    PubMed  CAS  Google Scholar 

  22. Gavriely N, Eckmann DM, Grotberg JB. Gas exchange by intratracheal insufflation in a ventilatory failure dog model. J Clin Invest 1992;90:2376–2383.

    Article  PubMed  CAS  Google Scholar 

  23. Nakos G, Zakinthinos S, Kotanidou A, Roussos C. Tracheal gas insufflation reduces the tidal volume while PaCO2 is maintained constant. Intensive Care Med 1994;20:407–413.

    Article  PubMed  CAS  Google Scholar 

  24. Nakos G, Lachana A, Prekates A, et al. Respiratory effects of tracheal gas insufflation in spontaneously breathing COPD patients. Intensive Care Med 1995;21904–912.

    Google Scholar 

  25. Kuo P-H, Wu H-D, Yu C-J, Yang S-H, Lai Y-L, Yang P-C. Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia. Am J Respir Crit Care Med 1996;154:612–616.

    PubMed  CAS  Google Scholar 

  26. Ravenscraft SA, Burke WC, Nahum A, et al. Tracheal Gas Insufflation Augments CO2 Clearance During Mechanical Ventilation. Am Rev Respir Dis 1993;148:345–351.

    PubMed  CAS  Google Scholar 

  27. Isabey D, Boussignac G, Harf A. Effect of air entrainment on airway pressure during endotracheal gas injection. J Appl Physiol 1898;67:771–779.

    Google Scholar 

  28. Brochard L, Mion G, Isabey D, et al. Constant-flow insufflation prevents arterial oxygen desaturation during endotracheal suctioning. Am Rev Resp Dis 1991;144:395–400.

    PubMed  CAS  Google Scholar 

  29. Pinquier D, Pavlovic D, Boussignac G, Aubier M, Beafils F. Benefits of low pressure multichannel endotracheal ventilation. Am J Respir Crit Care Med 1996;154:82–90.

    PubMed  CAS  Google Scholar 

  30. Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance-Part 1: Physiologic determinants and measurements. Crit Care Med 1992;20:1461–72.

    Article  PubMed  CAS  Google Scholar 

  31. Nahum A, Ravenscraft SA, Adams AB, Marini JJ. Inspiratory tidal volume sparing effects of tracheal gas insufflation in dogs with oleic acid-induced lung injury. J Critical Care 1995;10:115–121.

    Article  CAS  Google Scholar 

  32. Gowski D, Delgado E, Miro AM, et al. Tracheal gas insufflation during pressure-control ventilation: effect of using a pressure relief valve. Crit Care Med 1997;25:145–152.

    Article  PubMed  CAS  Google Scholar 

  33. Belghith M, Fierobe L, Brunet F, Monchi M, Mira J-P. Is tracheal gas insufflation an alternative to extrapulmonary gas exchangers in severe ARDS? Chest 1995;107:416–419.

    Article  Google Scholar 

  34. Kalfon P, Umamaheswara R, Gallart L, et al. Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 1997;87(1):6–17.

    Article  PubMed  CAS  Google Scholar 

  35. Hoyt JD, Marini J J, Nahum A. Effect of tracheal gas insufflation on demand valve triggering and total work during continuous positive airway pressure ventilation. Chest 1996;110:775–783.

    Article  PubMed  CAS  Google Scholar 

  36. Sznajder Jl, Nahum A, Crawford G, Pollak ER, Schumacker PT, Wood LDH. Alveolar pressure inhomogeneity and gas exchange during constant-flow ventilation in dogs. J Appl Physiol 1989;67:1489–1492.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Nahum, A. (1998). Tracheal Gas Insufflation. In: Matalon, S., Sznajder, J.L. (eds) Acute Respiratory Distress Syndrome. NATO ASI Series, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8634-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8634-4_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45830-9

  • Online ISBN: 978-1-4419-8634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics