Skip to main content

Map Kinases in Airway Disease: Standing at the Confluence of Basic and Clinical Science

  • Chapter
  • 238 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 297))

Abstract

Mitogen activated protein (MAP) kinases are a family of serineJthreonine protein kinases that currently include three major subgroups; the extracellular regulated kinase 2 (ERK2), the c-Jun NH2 terminal kinase (JNK), and the p38 kinase. Each of the three major subgroups of MAP kinase has additional isozymes (reviewed in 1). For example, there are three ERK isozymes, and up to 10 JNK isozymes, including differentially processed transcripts2. The nomenclature of the JNK MAP kinases is somewhat disjoined owing primarily to the contemporaneous cloning of these kinases. Kyriakis et al. cloned what they termed stress activated protein kinases (SAPK) α, β, γ, which are identical to the JNK MAP kinases cloned by Derijard et al.3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrell, J.E. Jr. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends in Biochemical Sciences 21: 460 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Derijard B, Hibi M, Wu I-H, Barrett T, Su B, Deng T, Karin M, and Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Kyriakis, J.M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E.A., Ahmad, M.F., Avruch, J., Woodgett, J.R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. Boulton TG, Yancopoulos C, Slaughter C, Moomaw J, Hsu Gregory JS, and Cobb M. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249: 64 (1990

    Article  PubMed  CAS  Google Scholar 

  5. Pages, G., Lenormand, P., L’Allemain, G., Chambard, J.C., Meloche, S., and Pouyssegur, J. Mitogen-activated protein kinases p42mapk p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90: 8319 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J. Activation of MAP Kinase Kinase is Necessary and Sufficient for PC 12 Differentiation and for Transformation of NIH 3T3 cells. Cel l 77: 841 (1994).

    Article  Google Scholar 

  7. Mansour, S. J., Matten, W. T., Hermann, A. S., Candia, J. M., Rong, S., Fukasawa, K., Vande Woude, G. F., and Ahn, N. G. 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Fänger, G.R., Gerwins, P., Widman, C, Jarpe, M.B., Johnson, G.L. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-jun amino terminal kinases? Curr. Opin. Gen. & Develop. 7: 67 (1997).

    Article  Google Scholar 

  9. Han, J., Lee, J.D., Bibbs, L., Ulevitch, R.J. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. Raingeaud, J., Gupta, S., Roger, J.S., Dickens, M., Han, J., Ulevitch, R.J., and Davis, R.J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270:7420 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. Opposing Effects of ERK and JNK-p38 MAP Kinases on Apoptosis. Science 270, 1326 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Liu Z., Hsu, H., Goeddel, D. V., Karin, M. 1996. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF kappa B activation prevents cell death. Cell 87: 565 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Ray, L.B., and Sturgill, T.W. Rapid stimulation by insulin of a serineJthreonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci USA. 84: 1502 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. Posada, J. A. and Cooper, J. A. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science, 255: 212 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Crews, C. M., Alessandrini, A., and Erikson, R. L. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. Zheng, C.-F., and Guan, K.-L. Activation of MEK family kinases requires phosphorylation of two conserved SerJThr residues. EMBO J. 13: 1123 (1994).

    PubMed  CAS  Google Scholar 

  17. Dent, P., Haser, W., Haystead, T.A., Vincent, L.A., Roberts, T.M., and Sturgill, T.W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Nature 257: 1404 (1992).

    CAS  Google Scholar 

  18. Derijard, B., Raingeaud, J., Barrett, T., Wu, I-H, Han, J., Ulevitch, J., and Davis, R.J. Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267: 682 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard, B., and Davis, R.J. MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell. Biol. 16: 1247 (1996).

    PubMed  CAS  Google Scholar 

  20. Han, J., Lee, J.-D., Jiang, Y., Li, Z., Feng, L., and Ulevitch, R.J. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J. Biol Chem. 271: 2886 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL, and Karin M. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 andMEKK. Science 266: 1719 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275: 90 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. Lin, L.-L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., and Davis, R.J. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. Gille, H., Kortenjann, M., Thomae, O., Moomaw, C, Slaughter, C, Cobb, M.H., and Shaw, P. E. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBOJ. 14: 951 (1995).

    CAS  Google Scholar 

  25. Whitmarsh, A.J., Shore, P., Sharrocks, A. D., and Davis, R.J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 403 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-jun activation domain. Genes and Development, 7: 2135 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Gupta, S., Cambell, D., Derijard, B., Davis, R.J. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 267: 389 (1996).

    Article  Google Scholar 

  28. Whitmarsh, A.J., Yang, S.H., Su, M.S., Sharrocks, A.D., and Davis, R.J. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex formation. Mol Cell Biol. 17: 2360 (1997).

    PubMed  CAS  Google Scholar 

  29. Panettieri R.A., Jr. Airways smooth muscle cell growth and proliferation. In Airway Smooth Muscle: Development and Regulation of Contractility. D. Raeburn and M. A. Giambycz, editors. Birchauser Verlag, Basel, Switzerland, (1994).

    Google Scholar 

  30. Kellerher, M.D., Abe, M.K, Chao, T-S. O., Soloway, J., Rosner, M.R., and Hershenson, M.B. Role of MAP kinase in bovine airway smooth muscle proliferation. Am. J. Physiolo. 268: L894 (1995).

    Google Scholar 

  31. Shapiro, P.S., Evans, J.N., Davis, R.J., and Posada, J.A. The seven-transmembranespanning receptors for endothelin and thrombin cause proliferation of airway smooth muscle cells and activation of the extracellular regulated kinase and c-Jun NH2-terminal kinase groups of mitogen activated protein kinases. J. Biol Chem. 271: 5750 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. Panettieri, R.A., Hall, LP., Maki, C, and Murray, R.K. α-thrombin increases cytosolic calcium and induces human airway smooth muscle cell proliferation. Am. J. Resp. Cell Mo. Biol. 13: 205 (1995).

    CAS  Google Scholar 

  33. Whelchel, A., Evans, J., and Posada, J., Inhibition of ERK activation attenuates endothelin-stimulated airway smooth muscle cell proliferation. Am. J. Respir. Cell Mol. Biol. 16: 589 (1997).

    PubMed  CAS  Google Scholar 

  34. Shapiro, P., Absher, M.P., Posada, J. A., and Evans, J.N. Activation of ERK and JNK1 MAP kinases in cultured lung tissue. Am. J. Physiol. In press (1997)

    Google Scholar 

  35. Matalon, S., DeMarco, V., Haddad, I.Y., Myles, C, Skimming, J.W. Schurch, S., Cheng, S., Cassin, S. Inhaled nitric oxide injures the pulmonary surfactant of lambs in vivo. Am. J. Physiol. 270: L273 (1996).

    PubMed  CAS  Google Scholar 

  36. Haddad, I.Y., Pataki, G., Hu, P., Galliani, C, Beckman, J.S., Matalon, S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Inves. 94: 2407 (1994).

    Article  CAS  Google Scholar 

  37. Ischiropoulos, H., al-Mehdi, Fisher, A.B. Reactive oxygen species in ischemic rat lung injury: contribution of peroxynitrite. Am. J. Physiol. 269: L158 (1995).

    PubMed  CAS  Google Scholar 

  38. Abe, M.K., Chao, T.O., Solway, J., Rosner, M.R., Hershenson, M.B. 1994. Hydrogen Peroxide Stimulates Mitogen-activated Protein Kinase in Bovine Tracheal Myocytes: Implications for Human Airway Disease. Am. J. Respir. Cell and Mol. Biol. 11: 577 (1994).

    CAS  Google Scholar 

  39. Lo, Y.Y.C., Wong, J.M.S., Cruz, T.F. Reactive oxygen species mediate cytokine activation of c-JunNH2—terminal kinases. J. Biol.Chem. 271: 15703 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. Shieh, J.C., Wilkinson, M.G., Buck, V., Morgan, B.A., Makino, K, Millar, J.B. The Mcs4 response regulator coordinately controls the stress-activated Wakl-Wis-Styl MAP kinase pathway and fission yeast cell cycle. Genes & Development 11: 1008 (1997).

    Article  CAS  Google Scholar 

  41. Abe, J.-L, Kusuhara, M., Ulevitch, R.J., Berk, B.C., and Lee, J.-D. Big mitogenactivated protein kinase 1 (BMK) is a redox-sensitive kinase. J. Biol. Chem. 271: 16586 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. Pombo, CM., Bonventure, J.V., Molnar, A., Kyriakis, J., Force, T. Activation of a human Ste20-like kinase by oxidant stress defines a novel stress response pathway. EMBO J. 15:4537 (1996).

    PubMed  CAS  Google Scholar 

  43. Roczniak, A., Burns, K.D. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule. Am. J. Physiol. 270: F106 (1996).

    PubMed  CAS  Google Scholar 

  44. Lander, H.M., Jacovina, A.T., Davis, R.J., and Tauras, J.M. Differntial activation of mitogen-activated protein kinases by nitric oxide. J. Biol Chem. 271: 19705 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. Yang, X., Khosravi-Far, R., Chang, H., and Baltimore, D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell. 89: 1067 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T., and Saltiel, A.R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270:27489 (1995).

    Article  PubMed  CAS  Google Scholar 

  47. Cuenda, A., Rouse, J., Doza, Y.N., Meier, R., Cohen, P., Gallagher, T.F., Young, P.R., Lee, J.C. SB 203580 is a specific inhibitior of a MAP kinase homologue which is stimulated by cellular stress and interleukin-1. FEBS Letters 364: 229 (1995).

    Article  PubMed  CAS  Google Scholar 

  48. Gupta, S., Campbell, D., Derijard, B., Davis, RJ. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 267: 389 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Vichi, P., Posada, J. (1998). Map Kinases in Airway Disease: Standing at the Confluence of Basic and Clinical Science. In: Matalon, S., Sznajder, J.L. (eds) Acute Respiratory Distress Syndrome. NATO ASI Series, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8634-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8634-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45830-9

  • Online ISBN: 978-1-4419-8634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics