Bovine Liver Mitochondrial NAD+ Glycohydrolase

Relationship to ADP-Ribosylation and Calcium Fluxes
  • Mathias Ziegler
  • Dierk Jorcke
  • Andrés Herrero-Yraola
  • Manfred Schweiger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 419)


Mitochondrial NAD+ glycohydrolase (NADase) has been proposed to be required for (nonenzymatic) ADP-ribosylation and subsequent activation of a Ca2+ release pathway. In our studies it has been found that several agents including nicotinamide, dithiothreitol, and EDTA exert no or little effect on ADP-ribosylation in isolated bovine liver mitochondria, while strongly inhibiting the NADase. The NADase did, however, catalyze the formation of cyclic purine nucleoside diphosphoriboses (similar to cyclic ADP-ribose) from NAD+ analogs. It appears possible, therefore, that this enzyme may be involved in the regulation of mitochondrial Ca2+ fluxes by forming a potent Ca2+-mobilizing agent, rather than by providing the substrate for non-enzymatic ADP-ribosylation.


None None Bovine Liver Release Pathway Fluorescent Analog Signalling Cyclic Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richter, C, &; and G.E.N. Kass. 1991. Oxidative stress in mitochondria: its relationship to cellular Calcium homeostasis, cell death, proliferation, and differentiation. Chem.-Biol. Interactions 11, 1–23CrossRefGoogle Scholar
  2. 2.
    Masmoudi, A., &; P. Mandel. 1987. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry 26, 1965–1969PubMedCrossRefGoogle Scholar
  3. 3.
    Ziegler, M., D. Jorcke, J. Zhang, R. Schneider, H. Klocker, B. Auer, &; M. Schweiger. 1996. Characterization of detergent-solubilized beef liver mitochondrial NAD glycohydrolase and its truncated hydrosoluble form. Biochemistry, 35, 5207–5212PubMedCrossRefGoogle Scholar
  4. 4.
    Barrio, J. R., J. A. Secrist III, &; N. J. Leonard. 1972. A fluorescent analog of nicotinamide adenine dinucleotide. Proc. Natl. Acad. Sci. U.S.A., 69, 2039–2042PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, J., M. Ziegler, R. Schneider, H. Klocker, B. Auer, &; M. Schweiger. 1995. Identification and purification of bovine liver mitochondrial NAD glycohydrolase. FEBS Lett. 377, 530–534PubMedCrossRefGoogle Scholar
  6. 6.
    McDonald, L. J., &; J. Moss. 1993. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 90, 6238–6241PubMedCrossRefGoogle Scholar
  7. 7.
    Graeff, R. M., T. F. Walseth, K. Fryxell, W. D. Branton, &; H. C. Lee. 1994. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J. Biol. Chem. 269, 30260–30267Google Scholar
  8. 8.
    Graeff, R. M., T. F. Walseth, H. K. Hill, &; H. C. Lee. 1996. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry 35, 379–386PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, H. C. 1994. Cyclic ADP-ribose: A new member of a super family of signalling cyclic nucleotides. Cell. Signalling 6, 591–600PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mathias Ziegler
    • 1
  • Dierk Jorcke
    • 1
  • Andrés Herrero-Yraola
    • 1
  • Manfred Schweiger
    • 1
  1. 1.Institut f. BiochemieFreie Univ. BerlinBerlinGermany

Personalised recommendations