Bovine Liver Mitochondrial NAD+ Glycohydrolase

Relationship to ADP-Ribosylation and Calcium Fluxes
  • Mathias Ziegler
  • Dierk Jorcke
  • Andrés Herrero-Yraola
  • Manfred Schweiger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 419)

Abstract

Mitochondrial NAD+ glycohydrolase (NADase) has been proposed to be required for (nonenzymatic) ADP-ribosylation and subsequent activation of a Ca2+ release pathway. In our studies it has been found that several agents including nicotinamide, dithiothreitol, and EDTA exert no or little effect on ADP-ribosylation in isolated bovine liver mitochondria, while strongly inhibiting the NADase. The NADase did, however, catalyze the formation of cyclic purine nucleoside diphosphoriboses (similar to cyclic ADP-ribose) from NAD+ analogs. It appears possible, therefore, that this enzyme may be involved in the regulation of mitochondrial Ca2+ fluxes by forming a potent Ca2+-mobilizing agent, rather than by providing the substrate for non-enzymatic ADP-ribosylation.

Keywords

EDTA Pyridine MgCl2 Disulfide Adenine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richter, C, &; and G.E.N. Kass. 1991. Oxidative stress in mitochondria: its relationship to cellular Calcium homeostasis, cell death, proliferation, and differentiation. Chem.-Biol. Interactions 11, 1–23CrossRefGoogle Scholar
  2. 2.
    Masmoudi, A., &; P. Mandel. 1987. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry 26, 1965–1969PubMedCrossRefGoogle Scholar
  3. 3.
    Ziegler, M., D. Jorcke, J. Zhang, R. Schneider, H. Klocker, B. Auer, &; M. Schweiger. 1996. Characterization of detergent-solubilized beef liver mitochondrial NAD glycohydrolase and its truncated hydrosoluble form. Biochemistry, 35, 5207–5212PubMedCrossRefGoogle Scholar
  4. 4.
    Barrio, J. R., J. A. Secrist III, &; N. J. Leonard. 1972. A fluorescent analog of nicotinamide adenine dinucleotide. Proc. Natl. Acad. Sci. U.S.A., 69, 2039–2042PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, J., M. Ziegler, R. Schneider, H. Klocker, B. Auer, &; M. Schweiger. 1995. Identification and purification of bovine liver mitochondrial NAD glycohydrolase. FEBS Lett. 377, 530–534PubMedCrossRefGoogle Scholar
  6. 6.
    McDonald, L. J., &; J. Moss. 1993. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 90, 6238–6241PubMedCrossRefGoogle Scholar
  7. 7.
    Graeff, R. M., T. F. Walseth, K. Fryxell, W. D. Branton, &; H. C. Lee. 1994. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J. Biol. Chem. 269, 30260–30267Google Scholar
  8. 8.
    Graeff, R. M., T. F. Walseth, H. K. Hill, &; H. C. Lee. 1996. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry 35, 379–386PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, H. C. 1994. Cyclic ADP-ribose: A new member of a super family of signalling cyclic nucleotides. Cell. Signalling 6, 591–600PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mathias Ziegler
    • 1
  • Dierk Jorcke
    • 1
  • Andrés Herrero-Yraola
    • 1
  • Manfred Schweiger
    • 1
  1. 1.Institut f. BiochemieFreie Univ. BerlinBerlinGermany

Personalised recommendations