Skip to main content

Signal Transduction Via the CD38/NAD+ Glycohydrolase

  • Chapter
ADP-Ribosylation in Animal Tissues

Abstract

Abstract The human cell surface CD38 molecule is a 46-kDa type-II transmembrane glycoprotein with a short N-terminal cytoplamic domain and a long Cys-rich C-terminal extracellular one. We previously demonstrated that an ecto-form NAD+ glycohydrolase (NADase) activity induced by all -trans retinoic acid in HL-60 cells is due to the extracellular domain of CD38. In the present study, we investigated a possible signal transduction mediated through CD38 in the retinoic acid-differentiated HL-60 cells with anti-CD38 monoclonal antibodies (mAbs). The addition of selected anti-CD38 mAbs to the cells induced rapid tyrosine phosphorylation of the cellular proteins with the molecular weights of 120,000, 87,000 and 77,000; the phosphorylated 120-kDa protein was identified as the c -cbl proto-oncogene product, p120c -cbl. Furthermore, the phosphorylated p120c -cbl associated with the 85-kDa subunit of phosphatidylinositol 3-kinase. To determine the relationship between the amino acid sequence responsible for the NADase activity and epitopes recognized by the stimulatory mAbs, we produced its carboxy-terminal deletion mutants in COS-7 cells. The mutants with less than 15 amino acids deleted from the carboxyl terminus of the 300-amino acid wild-type molecule still maintained NADase activity, but those with more than 27 amino acids deleted did not. Introduction of site-directed mutation of a cysteine residue (Cys275), located in the 273-285 sequence, completely abolished the NADase activity. These CD38 mutants were also used for an epitope mapping of anti CD38 mAbs. All the epitopes recognized by the mAbs inducing the tyrosine phosphorylation were mapped on the same Cys275-containing sequence of 273-285. Thus, the discrete carboxy-terminal sequence not only plays a key role in its ecto-NADase activity, but also contains the epitopes of the agonistic anti-CD38 mAbs for the transmembrane signaling. We also found that the agonistic mAbs markedly potentiate superoxide generation induced by the stimulation of G protein-coupled chemotactic receptors. Our results suggested that the stimulation of CD38 might generate an accessory signal(s) to enhance the G proteinmediated signaling, probably though the protein-tyrosine phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson, D. G. & Bell, J. I. 1990. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol. 144: 2811–2815.

    PubMed  CAS  Google Scholar 

  2. Malavasi, F., Funaro, A., Roggero, S., Horenstein, A., Calosso, L. & Mehta, K. 1994. Human CD38: a glycoprotein in search of a function. Immunol. Today 15: 95–97.

    Article  PubMed  CAS  Google Scholar 

  3. Kontani, K., Nishina, H., Ohoka, Y, Takahashi, K. & Katada, T. 1993. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J. Biol. Chem. 268: 16895–16898.

    PubMed  CAS  Google Scholar 

  4. Nishina, H., Inageda, K., Takahashi, K., Hoshino, S., Ikeda, K. & Katada, T. 1994. Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronate-binding activity. Biochem. Biophys. Res. Commun. c203: 1318–1323.

    Article  Google Scholar 

  5. Lee, H. C. & Aarhus, R. 1991. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2: 203–209.

    PubMed  CAS  Google Scholar 

  6. Lee, H. C, Galione, A. & Walseth, T. F. 1994. Cyclic ADP-ribose: metabolism and calcium mobilizing function. [Review]. Vitam. Horm. 48: 199–257.

    Article  PubMed  CAS  Google Scholar 

  7. Howard, M., Grimaldi, J. C, Bazan, J. F., Lund, F. E., Santos, A. L., Parkhouse, R. M., Walseth, T. F. & Lee, H. C. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  8. Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H. & Okamoto, H. 1993. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268: 26052–26054.

    PubMed  CAS  Google Scholar 

  9. Inageda, K., Takahashi, K., Tokita, K., Nishina, H., Kanaho, Y, Kukimoto, I., Kontani, K., Hoshino, S. & Katada, T. 1995. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen. J. Biochem. 117: 125–131.

    PubMed  CAS  Google Scholar 

  10. Takahashi, K., Kukimoto, I., Tokita, K., Inageda, K., Inoue, S., Kontani, K., Hoshino, S., Nishina, H., Kanaho, Y & Katada, T. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 37: 204–208.

    Article  Google Scholar 

  11. Funaro, A., Spagnoli, G. C, Ausiello, C. M., Alessio, M., Roggero, S., Delia, D., Zaccolo, M. & Malavasi, F. 1990. Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation. J. Immunol. 145: 2390–2396.

    PubMed  CAS  Google Scholar 

  12. Santos, A. L., Teixeira, C, Preece, G., Kirkham, P. A. & Parkhouse, R. M. 1993. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J. Immunol. 151: 3119–3130.

    Google Scholar 

  13. Zupo, S., Rugari, E., Dono, M., Taborelli, G., Malavasi, F. & Ferrarini, M. 1994. CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. Eur. J. Immunol. 24: 1218–1222.

    Article  PubMed  CAS  Google Scholar 

  14. Dianzani, U., Funaro, A., DiFranco, D., Garbarino, G., Bragardo, M., Redoglia, V., Buonfiglio, D., De, M. L., Piled, A. &; Malavasi, F. 1994. Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J. Immunol. 153: 952–959.

    PubMed  CAS  Google Scholar 

  15. Kumagai, M., Coustan, S. E., Murray, D. J., Silvennoinen, O., Murti, K. G., Evans, W. E., Malavasi, F. & Campana, D. 1995. Ligation of CD38 suppresses human B lymphopoiesis. J. Exp. Med. 181: 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  16. Ausiello, C. M., Urbani, F., Sala, A. L., Funaro, A. &; Malavasi, F. 1995. CD38 ligation induces discrete cytokine mRNA expression in human cultured lymphocytes. Eur. J. Immunol. 25: 1477–1480.

    Article  PubMed  CAS  Google Scholar 

  17. Deaglio, S., Dianzani, U., Horenstein, A. L., Fernandez, J. E., van Kooten, C, Bragardo, M., Funaro, A., Garbarino, G., Virgilio, F. D., Banchereu, J. &; Malavasi, F. 1996. Human CD38 ligand: A 120-KDa protein predominantly expressed on endothelial cells. J. Immunol. 156: 727–734.

    PubMed  CAS  Google Scholar 

  18. Kontani, K., Kukimoto, I., Nishina, H., Hoshino, S., Hazeki, O., Kanaho, Y. &; Katada, T. 1996. Tyrosine phosphorylation of the c-cbl proto-oncogene product mediated by cell surface antigen CD38 in HL-60 cells. J. Biol. Chem. 271: 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  19. Donovan, J. A., Wange, R. L., Langdon, W. Y. &; Samelson, L. E. 1994. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J. Biol. Chem. 269: 22921–22924.

    PubMed  CAS  Google Scholar 

  20. Cory, G. O., Lovering, R. C, Hinshelwood, S., MacCarthy, M. L, Levinsky, R. J. &; Kinnon, C. 1995. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton’s tyrosine kinase. J. Exp. Med. 182: 611–615.

    Article  PubMed  CAS  Google Scholar 

  21. Marcilla, A., Rivero, L. O., Agarwal, A. &; Robbins, K. C. 1995. Identification of the major tyrosine kinase substrate in signaling complexes formed after engagement of Fc gamma receptors. J. Biol. Chem. 270: 9115–9120.

    Article  PubMed  CAS  Google Scholar 

  22. Galisteo, M. L., Dikic, I., Batzer, A. G., Langdon, W. Y &; Schlessinger, J. 1995. Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J. Biol. Chem. 270: 20242–20245.

    Article  PubMed  CAS  Google Scholar 

  23. States, D. J., Walseth, T. F. &; Lee, H. C. 1992. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem. Sci. 17: 495.

    Article  PubMed  CAS  Google Scholar 

  24. Silvennoinen, O., Nishigaki, H., Kitanaka, A., Kumagai, M, Ito, C, Malavasi, F., Lin, Q., Conley, M. E. & Campana, D. 1996. CD38 signal transduction in human B-cell precursors: rapid induction of tyrosine phosphorylation, activation of syk tyrosine kinase, and phosphorylation of phospholipase C-y and phosphatydilinositol 3-kinase. J. Immunol. 156: 100–107.

    PubMed  CAS  Google Scholar 

  25. Kontani, K., Kukimoto, I., Kanda, Y, Inoue, S., Kishimoto, H., Hoshino, S. &; Katada, T. 1996. Induction of CD38/NADase and its monoclonal antibody-induced tyrosine phosphorylation in human leukemia cell lines. Biochem. Biophys. Res. Commun. (in press).

    Google Scholar 

  26. Kirkham, P. A., Santos, A. L., Harnett, M. M. &; Parkhouse, R. M. 1994. Murine B-cell activation via CD38 and protein tyrosine phosphorylation. Immunology 83: 513–516.

    PubMed  CAS  Google Scholar 

  27. Kikuchi, Y, Yasue, T., Miyake, K., Kimoto, M. &; Takatsu, K. 1995. CD38 ligation induces tyrosine phosphorylation of Bruton tyrosine kinase and enhanced expression of interleukin 5-receptor a chain: Synergistic effects with interleukin 5. Proc. Natl. Acad. Sci. U.S.A. 92: 11814–11818.

    Article  PubMed  CAS  Google Scholar 

  28. Okada, T., Sakuma, L., Fukui, Y, Hazeki, O. &; Ui, M. 1994. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269: 3563–3567.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kontani, K. et al. (1997). Signal Transduction Via the CD38/NAD+ Glycohydrolase. In: Haag, F., Koch-Nolte, F. (eds) ADP-Ribosylation in Animal Tissues. Advances in Experimental Medicine and Biology, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8632-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8632-0_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4652-4

  • Online ISBN: 978-1-4419-8632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics