ADP-Ribosylarginine Hydrolases and ADP-Ribosyltransferases

Partners in ADP-Ribosylation Cycles
  • Joel Moss
  • Anna Zolkiewska
  • Ian Okazaki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 419)

Abstract

Mono-ADP-ribosylation is a reversible modification of arginine residues in proteins, with NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases constituting opposing arms of a putative ADP-ribosylation cycle. The enzymatic components of an ADP-ribosylation cycle have been identified in both prokaryotic and eukaryotic systems. The regulatory significance of the cycle has been best documented in prokaryotes. As shown by Ludden and coworkers, ADP-ribosylation controls the activity of dinitro-genase reductase in the phototropic bacterium Rhodospirillum rubrum. ADP-ribosylation of other amino acids, such as cysteine, has also been demonstrated, lending credence to the hypothesis that this modification is heterogeneous.

In eukaryotes, the functional relationship between ADP-ribosyltransferases and ADP-ribosylarginine hydrolases is less well documented. The transferase-catalyzed reaction results in stereospeciflc formation of α-ADP-ribosylarginine from β-NAD; ADP-ribosylarginine hydrolases specifically cleave the α-anomer, leading to release of ADP-ribose and regeneration of the free guanidino group of arginine. The two reactions can thus be coupled in vitro. Coupling in vivo is dependent on cellular localization. The deduced amino acid sequences of ADP-ribosyltransferases from avian and mammalian tissues have common consensus sequences involved in catalytic activity but, in some instances, enzyme-specific cellular localization signals. The presence of amino- and carboxy-terminal signal sequences is consistent with the glycosylphosphatidylinositol(GPI)-anchoring to the cell surface. The muscle and lymphocyte transferases ADP-ribosylate integrins. Some transferases lack the carboxy- terminal signal sequence needed for GPI-anchoring. Most ADP-ribosylarginine hydrolase activity is cytosolic, although perhaps some is located at the cell surface. Deduced amino acid sequences of hydrolases from a number of mammalian species are consistent with their cytoplasmic localization. Katada and coworkers have determined, however, that auto-ADP-ribosylated RT6, a GPI-linked protein, is metabolized by a hydrolase-like activity, consistent with the existence of an ADP-ribosylation cycle. ADP-ribosyl RT6 may be internalized, thereby coming in contact with the cytosolic hydrolase; alternatively, a novel form of the hydrolase may be located at the surface. The mechanism of coupling of ADP-ribosyltransferases and hydrolases in eukaryotic ADP-ribosylation cycles has yet to be clarified.

Keywords

Cysteine Arginine Integrin Chol Dinucleotide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williamson K. C, & J. Moss. 1990. Mono-ADP-ribosyltransferases and ADP-ribosylarginine hydrolases: A mono-ADP-ribosylation cycle in animal cells. In: ADP-ribosylating Toxins and G Proteins: Insights into Signal Transduction, J. Moss, and M. Vaughan (eds). American Society for Microbiology, Washington, D.C., p. 493–510.Google Scholar
  2. 2.
    Okazaki, I. J., & J. Moss. 1996. Mono-ADP-ribosylation: A reversible posttranslational modification of proteins. In: Advances in Pharmacology. T. J. August, M. W. Anders, F. Murad, & J. T. Coyle (eds). Academic Press, San Diego, CA, 35: 247–280.Google Scholar
  3. 3.
    Moss, J., & M. Vaughan. 1978. Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc. Natl. Acad. Sci. USA. 75: 3621–3624.PubMedCrossRefGoogle Scholar
  4. 4.
    Moss, J., S. J. Stanley, & P. A. Watkins. 1980. Isolation and properties of an NAD-and guanidine-depend-ent ADP-ribosyltransferase from turkey erythrocytes. J. Biol. Chem. 255: 5838–5840.PubMedGoogle Scholar
  5. 5.
    Yost D. A., & J. Moss. 1983. Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:ar-ginine ADP-ribosyltransferases in turkey erythrocytes. J. Biol. Chem. 258: 4926–4929.PubMedGoogle Scholar
  6. 6.
    West, R. E. Jr, & J. Moss. 1986. Amino acid specific ADP-ribosylation: Specific NAD:arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. Biochem. 25: 8057–8062.CrossRefGoogle Scholar
  7. 7.
    Moss, J., & S. J. Stanley. 1981. Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc. Natl. Acad. Sci. USA. 78: 4809–4812.PubMedCrossRefGoogle Scholar
  8. 8.
    Moss, J., S. J. Stanley, & J. C. Osborne Jr. 1981. Effect of self-association on activity of an ADP-ribosyl-transferase from turkey erythrocytes. J. Biol. Chem. 256: 11452–11456.PubMedGoogle Scholar
  9. 9.
    Moss, J., J. C. Osborne Jr, & S. J. Stanley. 1984. Activation of an erythrocyte NAD:arginine ADP-ribosyl-transferase by lysolecithin and nonionic and zwitterionic detergents. Biochem. 23: 1353–1357.CrossRefGoogle Scholar
  10. 10.
    Okazaki, I. J., A. Zolkiewska, M. S. Nightingale, & J. Moss. 1994. Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochem. 33: 12828–12836.CrossRefGoogle Scholar
  11. 11.
    Okazaki, I. J., H-. J. Kim, N. G. McElvaney, & J. Moss. 1996. Molecular characterization of a glycosyl-phosphatidy linositol-linked ADP-ribosyltransferase from lymphocytes. Blood, in press.Google Scholar
  12. 12.
    Moss, J., S. J. Stanley, & N. J. Oppenheimer. 1979. Substrate specificity and partial purification of a stereospecific NAD-and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J. Biol. Chem. 254: 8891–8894.PubMedGoogle Scholar
  13. 13.
    Oppenheimer, N. J. 1978. Structural determination and stereospecificity of the choleragen-catalyzed reaction of NAD+ with guanidines. J. Biol Chem. 253: 4907–4910.PubMedGoogle Scholar
  14. 14.
    Moss, J., N. J. Oppenheimer, R. E. West Jr, & S. J. Stanley. 1986. Amino acid specific ADP-ribosylation: Substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochem. 25: 5408–5414.CrossRefGoogle Scholar
  15. 15.
    Zolkiewska, A., M. S. Nightingale, & J. Moss. 1992. Molecular characterization of NAD:arginine ADP-ribosy ltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA. 89: 11352–11356.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsuchiya, M., N. Hara, K. Yamada, H. Osago, & M. Shimoyama. 1994. Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J. Biol. Chem. 269: 27451–27457.PubMedGoogle Scholar
  17. 17.
    Davis, T., & S. Shall. 1995. Sequence of a chicken erythroblast mono(ADP-ribosyl)transferase-encoding gene and its upstream region. Gene 164: 371–372.PubMedCrossRefGoogle Scholar
  18. 18.
    Okazaki, I. J., H-. J. Kim, & J. Moss. 1996. A novel membrane-bound lymphocyte ADP-ribosyltransferase cloned from Yac-1 cells. Abstr., Am. Thoracic Soc. 608078.Google Scholar
  19. 19.
    Zolkiewska, A., & J. Moss. 1993. Integrin a7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J. Biol. Chem. 268: 25273–25276.PubMedGoogle Scholar
  20. 20.
    Wang, J., E. Nemoto, & G. Dennert. 1996. Regulation of CTL by ecto-nicotinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein. J. Immunol. 156: 2819–2827.PubMedGoogle Scholar
  21. 21.
    Moss, J., & M. Vaughan. 1988. ADP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins. Adv. Enzymol. 61: 303–379.PubMedGoogle Scholar
  22. 22.
    Hilz, H., R. Bredehorst, P. Adamietz, & K. Wielckens. 1982. Subfractionations and subcellular distribution of mono(ADP-ribosyl)proteins in eukaryotic cells. In: ADP-ribosylation Reactions. Biology and Medicine. O. Hayaishi, & K. Ueda (eds). Academic Press, San Diego, CA, p. 207–219.Google Scholar
  23. 23.
    Payne, M. D., E. L. Jacobson, J. Moss, & M. K. Jacobson. 1985. Modification of proteins by mono(ADP-ribosylation) in vivo. Biochem. 24: 7540–7549.CrossRefGoogle Scholar
  24. 24.
    Jacobson, M. K., P. T. Loflin, N. Aboul-Ela, M. Mingmuang, J, Moss, & E. L. Jacobson. 1990. Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J. Biol. Chem. 265: 10825–10828.PubMedGoogle Scholar
  25. 26.
    Cervantes-Laurean, D., D. E. Minter, E. L. Jacobson, & M. K. Jacobson. 1993. Protein glycation by ADP-ribose: Studies of model conjugates. Biochem. 32: 1528–1534.CrossRefGoogle Scholar
  26. 26.
    Cervantes-Laurean, D., P. T. Loflin, D. E. Minter, E. L. Jacobson, & M. K. Jacobson. 1995. Protein modification by ADP-ribose via acid-labile linkages. J. Biol. Chem. 270: 7929–7936.PubMedCrossRefGoogle Scholar
  27. 27.
    Tanuma, S., K. Kawashima, & H. Endo. 1988. Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosy-lates GTP-binding regulatory G protein. J. Biol. Chem. 263: 5485–5489.PubMedGoogle Scholar
  28. 28.
    Tanuma, S., & H. Endo. 1990. Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) G linkage. FEBS Lett. 261: 381–384.PubMedCrossRefGoogle Scholar
  29. 29.
    McDonald, L. J., L. A. Wainschel, N. J. Oppenheimer, & J. Moss. 1992. Amino acid-specific ADP-ribosylation: Structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. Biochem. 31: 11881–11887.CrossRefGoogle Scholar
  30. 30.
    McDonald, L. J., & J. Moss. 1994. Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol. Cell. Biochem. 138: 221–226.PubMedCrossRefGoogle Scholar
  31. 31.
    McDonald, L. J., & J. Moss. 1993. Nitric oxide-independent, thiol-associated ADP-ribosylation inactivates aldehyde dehydrogenase. J. Biol. Chem. 268: 17878–17882.PubMedGoogle Scholar
  32. 32.
    Ludden, P. W. 1994. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol. Cell. Biochem. 138: 123–129.PubMedCrossRefGoogle Scholar
  33. 33.
    Moss, J., S-. C. Tsai, R. Adamik, H-. C. Chen, & S. J. Stanley. 1988. Purification and characterization of ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochem. 27: 5819–5823.CrossRefGoogle Scholar
  34. 34.
    Moss, J., S. J. Stanley, M. S. Nightingale, J. J. Murtagh Jr, L. Monaco, K. Mishima, H-. C. Chen, K. C. Williamson, & S-. C. Tsai. 1992. Molecular and Immunological characterization of ADP-ribosylarginine hydrolases. J. Biol. Chem. 267: 10481–10488.PubMedGoogle Scholar
  35. 35.
    Takada, T., K. Iida, & J. Moss. 1993. Cloning and site-directed mutagenesis of human ADP-ribosylarginine hydrolase. J. Biol. Chem. 268: 17837–17843.PubMedGoogle Scholar
  36. 36.
    Moss, J., M. K. Jacobson, & S. J. Stanley. 1985. Reversibility of arginine-specific mono(ADP-ribo-syl) ation: Identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. Proc. Natl. Acad. Sci. USA. 82: 5603–5607.PubMedCrossRefGoogle Scholar
  37. 37.
    Maehama, T., H. Nishina, & T. Katada. 1994. ADP-ribosylarginine glycohydrolase catalyzing the release of ADP-ribose from the cholera toxin-modified α-subunits of GTP-binding proteins. J. Biochem. 116: 1134–1138.PubMedGoogle Scholar
  38. 38.
    Zolkiewska, A., & J. Moss. 1995. Processing of ADP-ribosylated integrin α7 in skeletal muscle myotubes. J. Biol. Chem. 270: 9227–9233.PubMedCrossRefGoogle Scholar
  39. 39.
    Maehama, T., H. Nishina, S. Hoshino, Y. Kanaho, & T. Katada. 1995. NAD+-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes. J. Biol. Chem. 270: 22747–22751.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Joel Moss
    • 1
  • Anna Zolkiewska
    • 1
  • Ian Okazaki
    • 1
  1. 1.Pulmonary-Critical Care Medicine Branch National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations