Expression and Comparative Analysis of Recombinant Rat and Mouse RT6 T Cell Mono(ADP-Ribosyl)Transferases In E. Coli

  • Stefan Karsten
  • Jens Schröder
  • Cristina Da Silva
  • Dominik Kahlke
  • Heinz-Günter Thiele
  • Friedrich Koch-Nolte
  • Friedrich Haag
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 419)

Abstract

Recombinant RT6 proteins of rat and mouse were analyzed for NAD-metabolizing, i.e. mono(ADP-ribosyl)transferase, NAD-glycohydrolase (NADase) and ADP-ribosyl cyclase activities. The results reveal surprising intra- as well as inter-species differences in enzyme activities. While mouse Rt6 proteins were found to be strong arginine-specific transferases, but comparatively weak NADases, the opposite held true for rat RT6, for which transferase activity could only be detected in the form of arginine-specific autoADP-ribosylation, displayed by RT6.2 but not by RT6.1. NADase activity of rat RT6 was not accompanied by production of cyclic ADPR (cADPR). Rat RT6 gained potent arginine-specific transferase activity by exchange of a single amino acid for the corresponding residue of the mouse proteins.

Keywords

Hydrolysis HPLC Adenosine Arginine Glutamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koch, R, F. Haag, A. Kashan & H. G. Thiele. 1990. Primary structure of rat RT6.2, a nonglycosylated phosphatidylinositol-linked surface marker of postthymic T cells. Proc Natl Acad Sci USA 87: 964.PubMedCrossRefGoogle Scholar
  2. 2.
    Prochazka, M., H. R. Gaskins, E. H. Leiter, F. Koch-Nolte, F. Haag & H. G. Thiele. 1991. Chromosomal localization, DNA polymorphism, and expression of Rt-6, the mouse homologue of rat T-lymphocyte differentiation marker RT6. Immunogenetics 33: 152.PubMedCrossRefGoogle Scholar
  3. 3.
    Zolkiewska, A., M. S. Nightingale & J. Moss. 1992. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 89: 11352.PubMedCrossRefGoogle Scholar
  4. 4.
    Takada, T., K. Iida & J. Moss. 1994. Expression of NAD glycohydrolase activity by rat mammary adenocarcinoma cells transformed with rat T cell alloantigen RT6.2. J Biol Chem 269: 9420.PubMedGoogle Scholar
  5. 5.
    Haag, F., V. Andresen, S. Karsten, F. Koch-Nolte & H.-G. Thiele. 1995. Both allelic forms of the rat T cell differentiation marker RT6 display nicotinamide adenine dinucleotide (NAD)-glycohydrolase activity, yet only RT6.2 is capable of automodification upon incubation with NAD. Eur. J. Immunol. 25: 2355.PubMedCrossRefGoogle Scholar
  6. 6.
    Maehama, T., H. Nishina, S. Hoshino, Y. Kanaho & T. Katada. 1995. NAD+-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes. J. Biol. Chem. 270: 22747.PubMedCrossRefGoogle Scholar
  7. 7.
    Koch-Nolte, F., D. Petersen, S. Balasubramanian, F. Haag, D. Kahlke, T. Wilier, R. Kastelein, F. Bazan & H.-G. Thiele. 1996. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl) transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J Biol Chem 271: 7686.PubMedCrossRefGoogle Scholar
  8. 8.
    Gelman, L, P. Deterre, H. Gouy, L. Boumsell, P. Debre & G. Bismuth. 1993. The lymphocyte surface antigen CD38 acts as a nicotinamide adenine dinucleotide glycohydrolase in human T lymphocytes. Eur J Immunol 23:3361.PubMedCrossRefGoogle Scholar
  9. 9.
    Zocchi, E., L. Franco, L. Guida, U. Benatti, A. Bargellesi, F. Malavasi, H. C. Lee & F. A. De. 1993. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun 196: 1459.PubMedCrossRefGoogle Scholar
  10. 10.
    Grimaldi, J. C, S. Balasubramanian, N. H. Kabra, A. Shanafelt, J. F. Bazan, G. Zurawski & M. C. Howard. 1995. CD38-mediated ribosylation of proteins. J. Immunol. 155: 811.PubMedGoogle Scholar
  11. 11.
    Wang, J., E. Nemoto, A. Y. Kots, H. R. Kaslow & G. Dennert. 1994. Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyl transferase. J. Immunol. 153: 4048.PubMedGoogle Scholar
  12. 12.
    Lund, F., N. Solvason, J. C. Grimaldi, R. M. E. Parkhouse & M. Howard. 1995. Murine CD38: an immunoregulatory ectoenzyme. Immunol Today 16: 469.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, J., E. Nemoto & G. Dennert. 1996. Regulation of CTL by ecto-nicotinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein. J. Immunol. 156: 2819.PubMedGoogle Scholar
  14. 14.
    Howard, M., J. C. Grimaldi, J. F. Bazan, F. E. Lund, A. L. Santos, R. M. Parkhouse, T. F. Walseth & H. C. Lee. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056.PubMedCrossRefGoogle Scholar
  15. 15.
    Cervantes-Laurean, D., D. E. Minter, E. L. Jacobsen & M. K. Jacobsen. 1993. Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry 32: 1528.PubMedCrossRefGoogle Scholar
  16. 16.
    Guse, A. H., C. P. da Silva, F. Emmrich, G. A. Ashamu, B. V. Potter & G. W. Mayr. 1995. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines. J Immunol 155: 3353.PubMedGoogle Scholar
  17. 17.
    Graeff, R. M., T. F. Walseth, K. Fryxell, W. D. Branton & H. C. Lee. 1994. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem 269: 30260.PubMedGoogle Scholar
  18. 18.
    Rigby, M. R., R. Bortell, L. A. Stevens, J. Moss, T. Kanaitsuka, H. Shigeta, J. P. Mordes, D. L. Greiner & A. A. Rossini. 1996. Rat RT6.2 and mouse Rt6 locus 1 are NAD+:arginine ADP ribosyltransferases with auto-ADP ribosylation activity. J. Immunol. 156: 4259.PubMedGoogle Scholar
  19. 19.
    Moss, J. & M. Vaughan. 1990. ADP-ribosylating toxins and G proteins: Insights into signal transduction. Washington DC: American Society for Microbiology.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Stefan Karsten
    • 2
  • Jens Schröder
    • 2
  • Cristina Da Silva
    • 1
  • Dominik Kahlke
    • 2
  • Heinz-Günter Thiele
    • 2
  • Friedrich Koch-Nolte
    • 2
  • Friedrich Haag
    • 2
  1. 1.Department of Physiological ChemistryHamburg UniversityHamburgGermany
  2. 2.Department of ImmunologyUniversity Hospital Hamburg-EppendorfHamburgGermany

Personalised recommendations