Surface Reactions at Metal Oxides: Relaxation Spectroscopy and Charge Transfer

  • W. Geyer
  • Th. Ochs
  • C. Krummel
  • M. Fleischer
  • H. Meixner
  • D. Kohl
Chapter

Abstract

Ga203 films are exposed to square pulses of methane. The reaction products formed on the surface are detected by a mass spectrometer. The desorption energies and the frequency factors are calculated for H20 (Ea=0.2 eV, fa=2×103 s-1) and C02 (Ea=1.0 eV, fa=100×103 s-1). Semiempirical Hartree-Fock calculations with the MNDO-PM3 method give information about the adsorption process. The energy gain of physisorption amounts to 0.27 eV. The heat of formation of the chemisorbed CH3 group and the H atom is 4.05 eV lower in comparison to the value of the physisorbed methane. After the COlatt. group formation the energy gain is 7.33 eV. The binding energy of the formed COlatt. is calculated to 2.07 eV. The charge transfer is estimated using the mulliken charges. A reaction scheme for the catalytic oxidation of methane by lattice oxygen is proposed. The conductance increase of Ga203 on exposure to methane can be explained by the creation of oxygen vacancies and by the formation of absorbed hydrogen, both acting as surface donors.

Keywords

Titanium Methane Graphite Platinum Gallium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fleischer, M. and H. Meixner, Sensing reducing gases at high temperatures using long-term stable Ga203 thin films, Sensors and Actuators B, 6 (1992) 257–261.CrossRefGoogle Scholar
  2. [2]
    Grix, R., R. Kutscher, G. Li, U. Grüner and H. Wollnik, A Time-of-flight Mass Analyzer with High Resolving Power, Rapid Communications in Mass Spectrometry, Vol. 2, No. 5, 1988.Google Scholar
  3. [3]
    Stewart, J.J.P., Journal of Computational Chemistry, 10 (1989) 209–220.CrossRefGoogle Scholar
  4. [4]
    Stewart, J.J.P., MOPAC Manual (7th Edition).Google Scholar
  5. [5]
    Stewart, J.J.P., Optimisation of Parameters for Semiempirical Methods, Journal of Computational Chemistry, Vol. 10, No. 2 (1989), 209–220.CrossRefGoogle Scholar
  6. [6]
    Dewar, M.J.S. and C. Jie, Organometallics, 8 (1989), 1544.CrossRefGoogle Scholar
  7. [7]
    Geller, S., Crystal Structure of β-Ga203, The Journal of Chemical Physics, 33 (1960), 676–684.CrossRefGoogle Scholar
  8. [8]
    Chase, A.B., Growth of β-Ga203 by the Verneuil Technique, Journal of the American Ceramic Society, 47/9 (1964) 470.CrossRefGoogle Scholar
  9. [9]
    Becker, F., C. Krummel, A. Freiling, M. Fleischer and C. Kohl, Decomposition of methane on polycrystalline thick films of Ga203 investigated by thermal desorption spectroscopy with a mass spectrometer, Fresenius J. Anal. Chem. 358 (1997), p. 187–189CrossRefGoogle Scholar
  10. [10]
    Henzler, M. and W. Göpel, Oberflächenphysik des Festkörpers, Teubner Studienbücher, Stuttgart 1994Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • W. Geyer
    • 1
    • 2
  • Th. Ochs
    • 1
    • 2
  • C. Krummel
    • 1
    • 2
  • M. Fleischer
    • 1
    • 2
  • H. Meixner
    • 1
    • 2
  • D. Kohl
    • 1
    • 2
  1. 1.Institute of Applied PhysicsJustus-Liebig-UniversityGieβenGermany
  2. 2.SIEMENS AG, ZT KM2MünchenGermany

Personalised recommendations