Casein Micelle Structure, Functions and Interactions

  • C. G. De Kruif
  • C. Holt


In this chapter, we aim to present a consistent description of the structure and functions of caseins and the casein micelle. Function, it must be stressed, is interpreted here to mean both the biological functions of casein in the mammary gland and milk and the function in dairy foods. Thus, we tread a variation of a well-worn path in biology by exploring a structure-function trichotomy.


Skim Milk Calcium Phosphate Casein Micelle Scatter Length Density Polyelectrolyte Brush 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alaimo, M.H., Wickham, E.D. and Farrell, H.M., Jr. (1999a) Effect of self association of αs1-casein and its cleavage fractions αs1-casein (136-96) and αs1-casein (1-197) on aromatic circular dichroic spectra: comparison with predicted models. Biochim. Biophys. Acta, 1431, 395–409.CrossRefGoogle Scholar
  2. Alaimo, M.H., Farrell, H.M., Jr. and Germann, M.W. (1999b) Conformation of the hydrophobic peptide αs1-casein (136-196). Biochim. Biophys. Acta, 1431, 410–20.CrossRefGoogle Scholar
  3. Aoki, T., Kako, Y. and Imamura, T. (1986) Separation of casein aggregates cross-linked by colloidal calcium phosphate from bovine casein micelles by high performance gel chromatography in the presence of urea. J. Dairy Res., 53, 53–9.CrossRefGoogle Scholar
  4. Aoki, T., Yamada, N., Tomita, I., Kako, Y. and Imamura, T. (1987) Caseins are cross-linked through their ester phosphate groups by colloidal calcium phosphate. Biochim. Biophys. Acta, 911, 238–43.CrossRefGoogle Scholar
  5. Aoki, T., Yamada, N., Kako, Y. and Imamura, T. (1988) Dissociation during dialysis of casein aggregates cross-linked by colloidal calcium phosphate in bovine casein micelles. J. Dairy Res., 55, 189–95.CrossRefGoogle Scholar
  6. Aoki, T., Umeda, T. and Kako, Y. (1992) The least number of phosphate groups for crosslinking of casein by colloidal calcium phosphate. J. Dairy Sci., 75, 971–5.CrossRefGoogle Scholar
  7. Baxter, R.J. (1968) Percus-Yevick equation for hard spheres with surface adhesion. J. Chem. Phys., 49, 2770–4.CrossRefGoogle Scholar
  8. Baranyi, M., Brignon, G., Anglade, P. and Ribadeau Dumas, B. (1995) New data on the milk of rabbit (Oryctolagus cuniculus). Comp. Biochem. Physiol., 111B, 407–15.Google Scholar
  9. Berry, G.P. and Creamer, L.K. (1975) The association of β-casein. The importance of the C-terminal region. Biochemistry, 14, 3542–5.CrossRefGoogle Scholar
  10. Belton, P.S., Lyster, R.L.J. and Richards, C.P. (1985) The 31P nuclear magnetic resonance spectrum of cows’ milk. J. Dairy Res., 52, 47–54.CrossRefGoogle Scholar
  11. Bigelow C.C. (1967) On the average hydrophobicity of proteins and the relation between it and protein structure. J. Theor. Biol. 16, 187–211.CrossRefGoogle Scholar
  12. Blanch, E.W., Syme, CD., Holt, C, Goedert, M., Hecht, L. and Barron, L.D. (2002) A Raman optical activity study of rheomorphism in milk and brain proteins: Implications for fibrillogenic propensity. Eur. J. Biochem., 269, 148–56.CrossRefGoogle Scholar
  13. Brignon, G., Mahé, M.-F., Ribadeau Dumas, B., Mercier, J.-C. and Grosclaude, F. (1990) Two of the three genetic variants of goat αs1-casein which are synthesized at a reduced level have an internal deletion possibly due to altered RNA splicing. Eur. J. Biochem., 193, 237–41.CrossRefGoogle Scholar
  14. Creamer, L.K., Berry, G.P. and Mills, O.E. (1977) A study of the dissociation of β-casein from the bovine casein micelle at low temperature. N.Z. J. Dairy Sci. Technol, 12, 58–66.Google Scholar
  15. Cross, K.J., Huq, N.L., Bicknell, W. and Reynolds, E.C. (2001) Cation-dependent structural features of β-casein-(l-25). Biochem. J., 356, 277–86.CrossRefGoogle Scholar
  16. Cuilliére, M.L., Trégoat, V., Béné, M.C, Faure, G. and Montagne, P. (1999) Changes in the κ-casein and β-casein concentrations in human milk during lactation. J. Clin. Lab. Anal, 13, 213–8.CrossRefGoogle Scholar
  17. Dalgleish, D.G. (1983) Coagulation of renneted bovine casein micelles: dependence on temperature, calcium ion concentration and ionic strength. J. Dairy Res., 50, 331–40.CrossRefGoogle Scholar
  18. Dalgleish, D.G. and Law, A.J.R. (1988) pH-induced dissociation of bovine casein micelles. I. Analysis of liberated caseins. J. Dairy Res., 55, 529–38.CrossRefGoogle Scholar
  19. Dalgleish, D.G. and Law, A.J.R. (1989) pH-induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. J. Dairy Res., 56, 727–35.CrossRefGoogle Scholar
  20. Dalgleish, D.G., Home, D.S. and Law, A.J.R. (1989) Size related differences in bovine casein micelles. Biochim. Biophys. Acta, 991, 383–7.CrossRefGoogle Scholar
  21. Davies, D.T. and Law, A.J.R. (1977) The composition of whole casein from the milk of Ayrshire cows. J. Dairy Res., 44, 447–54.CrossRefGoogle Scholar
  22. Davies, D.T. and Law, A.J.R. (1983) Variation in the protein composition of bovine casein micelles and serum casein in relation to micellar size and milk temperature. J. Dairy Res., 50, 67–75.CrossRefGoogle Scholar
  23. De Kruif, CG. (1992) Casein micelles: diffusivity as a function of renneting time. Langmuir, 8, 2932–7.CrossRefGoogle Scholar
  24. De Kruif, C.G. (1998) Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci., 81, 3019–28.CrossRefGoogle Scholar
  25. De Kruif, C.G. (1999) Casein micelle interactions. Int. Dairy J., 9, 183–8.CrossRefGoogle Scholar
  26. De Kruif, C.G. and Van Miltenburg, J.C (1990) Phase transitions in sterically stabilized silica colloids studied by adiabatic calorimetry. J. Chem. Phys., 93, 6865–9.CrossRefGoogle Scholar
  27. De Kruif, C.G. and Roefs, S.P.F.M. (1996) Skim milk acidification at low temperatures: a model for the stability of casein micelles. Neth. Milk Dairy J., 50, 113–20.Google Scholar
  28. De Kruif, C.G. and Zhulina, E.B. (1996) κ-Casein as a polyelectrolyte brush on the surface of casein micelles. Colloid Surface A: 117, 151–9.CrossRefGoogle Scholar
  29. De Kruif, C.G., Jeurnink, T.J.M. and Zoon, P. (1992) The viscosity of milk during the initial stages of renneting. Neth. Milk Dairy J., 46, 123–37.Google Scholar
  30. Dev, B.C., Sood, S.M., De Wind, S. and Slattery, C.W. (1994) κ-Casein and β-caseins in human milk micelles. Arch. Biochem. Biophys., 314, 329–36.CrossRefGoogle Scholar
  31. Dhont, J.K.G. (1996) An Introduction to Dynamics of Colloids, Elsevier Science, Amsterdam.Google Scholar
  32. Dickinson, E. (2000) Structure and rheology of simulated gels formed from aggregated colloidal particles. J. Colloid. Interf. Sci., 225, 2–15.CrossRefGoogle Scholar
  33. Donnelly, W.J, McNeill, G.P., Buchheim, W. and McGann, T.C.A. (1984) A comprehensive study of the relationship between size and protein composition in natural bovine casein micelles. Biochim. Biophys. Acta, 789, 136–43.CrossRefGoogle Scholar
  34. Ellegård, K.H., Gammelgård-Larsen, C, Sørensen, E.S. and Fedosov, S. (1999) Process scale Chromatographic isolation, characterization and identification of tryptic bioactive casein phosphopeptides. Int. Dairy J., 9, 639–52.CrossRefGoogle Scholar
  35. Evans, M.T.A., Phillips, M.C. and Jones, M.N. (1979) The conformation and aggregation of bovine β-casein A. II. Thermodynamics of thermal association and the effects of changes in polar and apolar interactions on micellization. Biopolymers, 18, 1123–40.CrossRefGoogle Scholar
  36. Greenberg, R., Groves, M.L. and Dower, H.J. (1984) Human β-casein amino acid sequence and identification of phosphorylation sites. J. Biol. Chem., 259, 5132–8.Google Scholar
  37. Griffin, M.C.A. (1987) Structural studies of casein micelles using photon correlation spectroscopy. J. Colloid. Interf. Sci., 115, 499–506.CrossRefGoogle Scholar
  38. Griffin, M.C.A. and Roberts, G.C.K. (1985) A 1H-n.m.r. study of casein micelles. Biochem. J., 228, 273–6.Google Scholar
  39. Griffin, M.C.A., Lyster, R.L.J. and Price, J.C. (1988) The disaggregation of calcium-depleted casein micelles. Eur. J. Biochem., 174, 339–43.CrossRefGoogle Scholar
  40. Groves, M.L., Dower, H.J. and Farrell, H.M., Jr. (1992) Reexamination of the polymeric distributions of κ-casein isolated from bovine milk. J. Protein Chem., 11, 21–8.CrossRefGoogle Scholar
  41. Hambraeus, L. (1992) Nutritional aspects of milk proteins. In Advanced Dairy Chemistry, Volume 1, 2nd edn., (P.F. Fox ed.) Elsevier Applied Science, Barking, Essex, UK, pp. 457–90.Google Scholar
  42. Hansen, S., Bauer, R., Lomholt, S.B., Bruun Qvist, K., Pedersen, J.S. and Mortensen, K. (1996) Structure of casein micelles studied by small-angle neutron scattering. Eur. Biophys. J., 24, 143–7.CrossRefGoogle Scholar
  43. Holt, C. (1985) The size distribution of bovine casein micelles. Food Microstruct., 4, 1–10.Google Scholar
  44. Holt, C. (1992) Structure and stability of bovine casein micelles. Adv. Protein Chem., 43, 63–151.CrossRefGoogle Scholar
  45. Holt, C. (1998) Casein micelle substructure and calcium phosphate interactions studied by Sephacryl column chromatography. J. Dairy Sci., 81, 2994–3003.CrossRefGoogle Scholar
  46. Holt, C. and Dalgleish, D.G. (1986) Electrophoretic and hydrodynamic properties of bovine casein micelles interpreted in terms of particles with an outer hairy layer. J. Colloid Interf. Sci., 114, 513–24.CrossRefGoogle Scholar
  47. Holt, C. and Home, D.S. (1996) The hairy casein micelle: Evolution of the concept and its implications for dairy processing. Neth. Milk Dairy J., 50, 1–27.Google Scholar
  48. Holt, C. and Hukins, D.W.L. (1991) Structural analysis of the environment of calcium ions in crystalline and amorphous calcium phosphates by X-ray absorption spectroscopy and a hypothesis concerning the biological function of the casein micelle. Int. Dairy J., 1, 151–65.CrossRefGoogle Scholar
  49. Holt, C. and Jenness, R. (1984) Interrelationships of constituents and partition of salts in milk samples from eight species. Comp. Biochem. Physiol., 77A, 275–82.CrossRefGoogle Scholar
  50. Holt, C. and Sawyer, L. (1993) Caseins as rheomorphic proteins: Interpretation of the primary and secondary structures of the αs1-, β-and κ-caseins. J. Chem. Soc. Faraday Trans, 89, 2683–92.CrossRefGoogle Scholar
  51. Holt, C. and Van Kemenade, M.J.J.M. (1989) Interaction of phosphoproteins with calcium phosphates. In Calcified Tissue, (D.W.L. Hukins ed.) Macmillan, London, pp. 175–213.Google Scholar
  52. Holt, C, Davies, D.T. and Law, A.J.R. (1986) The effects of colloidal calcium phosphate content and milk serum free calcium ion concentration on the dissociation of bovine casein micelles. J. Dairy Res., 53, 557–72.CrossRefGoogle Scholar
  53. Holt, C, Wahlgren, N.M. and Drakenberg, T. (1996) Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem. J., 314, 1035–9.Google Scholar
  54. Holt, C, Timmins, P.A., Errington, N. and Leaver, J. (1998) A core-shell model of calcium phosphate nanoclusters derived from sedimentation equilibrium and small angle X-ray and neutron scattering measurements. Eur. J. Biochem., 252, 73–8.CrossRefGoogle Scholar
  55. Holt, C, Drakenberg, T., Errington, N., De Kruif, C.G., Leaver, J., Timmins, P.A, Tuinier, R. and Wahlgren, N.M. (1999) Effect of pH and calcium, phosphate and phosphopeptide concentrations on the size and substructure of calcium phosphate nanoclusters as determined by X-ray and neutron scattering and circular dichroism spectroscopy. Fibre Diffraction Review, 8, 74–5.Google Scholar
  56. Home, D.S. (1992) Ethanol stability. In Advanced Dairy Chemistry, Volume 1, 2nd Edn., (P.F. Fox ed.) Elsevier Applied Science, Barking, Essex, UK, pp. 657–90.Google Scholar
  57. Horne, D.S. (1998) Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J., 8, 171–7.CrossRefGoogle Scholar
  58. Home, D.S., Parker, T.G. and Dalgleish, D.G. (1989) Casein micelles, polycondensation and fractals. In Food Colloids, (R.D. Bee, P. Richmond and J. Mingins eds.) Special Publication No. 75, Royal Society of Chemistry, London, pp. 400–5.Google Scholar
  59. Huq, N.L., Cross, K.J. and Reynolds, E.C. (1995) A 1H-NMR study of the casein phosphopeptide αs1-casein (59-79). Biochim. Biophys. Acta, 1247, 201–8.CrossRefGoogle Scholar
  60. Jenness, R. (1979a) Comparative aspects of milk proteins. J. Dairy Res., 46, 197–210.CrossRefGoogle Scholar
  61. Jenness, R. (1979b) The composition of milk. In Lactation-A Comprehensive Treatise, Vol. 3, (B.L. Larson and V.R. Smith eds.) Academic Press, New York, pp. 3–37.Google Scholar
  62. Jeurnink, T.J.M and De Kruif, C.G. (1993) Changes in milk on heating: viscosity measurements. J. Dairy Res., 60, 139–50.CrossRefGoogle Scholar
  63. Kent, J.C., Arthur, P.G. and Hartmann, P.E. (1998) Citrate, calcium phosphate and magnesium in cow’s milk at initiation of lactation. J. Dairy Res., 65, 55–68.CrossRefGoogle Scholar
  64. Kitts, D.D. and Yuan, Y.V. (1992) Caseinophosphopeptides and calcium bioavailability. Trends Food Sci. Tech., 3, 31–5.CrossRefGoogle Scholar
  65. Kroening, T.A., Mukerji, P. and Hards, R.G. (1998) Analysis of β-casein and its phosphoforms in human milk. Nutr. Res., 18, 1175–86.CrossRefGoogle Scholar
  66. Kurkela, S. and Frank, M. (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol. Biol, 15, 137–44.CrossRefGoogle Scholar
  67. Langendorff, V., Cuvelier, G., Launay, B., Michon, C, Parker, A. and De Kruif, C.G. (2000) Effect of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocolloid, 14, 273–80.CrossRefGoogle Scholar
  68. Lekkerkerker, H.N.W., Poon, W.C.K., Pusey, P.N., Stroobants, A. and Warren, P.B. (1992) Phase behaviour of colloid + polymer mixtures. Europhys. Lett., 20, 559–62.CrossRefGoogle Scholar
  69. Le Questel, J.Y., Morris, D.G, MacCallum, P.H. and Milner-White, E.J. (1993) Common ring motifs in proteins involving asparagine or glutamine amide groups hydrogen-bonded to main chain atoms. J. Mol. Biol., 231, 888–96.CrossRefGoogle Scholar
  70. Lieske, B, Faber, W. and Konrad, G. (1999) Effect of pH on results of size fractionation of bovine casein micelles using porous glass chromatography. Milchwissenschaft, 54, 9–13.Google Scholar
  71. Lyster, R.L.J., Mann, S.M., Parker, S.B. and Williams, R.J.P. (1984) Nature of micellar calcium phosphate in cow’s milk as studied by high resolution electron microscopy. Biochim. Biophys. Acta, 801, 315–7.CrossRefGoogle Scholar
  72. Martin, P. (1999) Genetic polymorphism of caseins: a tool to investigate casein micelle organisation. Int. Dairy J., 9, 163–71.CrossRefGoogle Scholar
  73. Marozine, A. and De Kruif, C.G. (2000) Interaction of pectin and casein micelles. Food Hydrocolloid, 391–4.Google Scholar
  74. Mellema, M., Leermakers, F.A.M. and De Kruif, C.G. (1999) Molecular mechanism of the renneting process of skim milk examined by viscosity and light scattering experiments and simulated by SCF calculations. Langmuir, 15, 6304–13.CrossRefGoogle Scholar
  75. Mellema, M., van Opheusden, J.H. and van Vliet, T. (1999) Relating colloidal particle interactions to gel structure using Brownian dynamics simulations and the Fuchs stability ratio. J. Chem. Phys., 111, 6129–35.CrossRefGoogle Scholar
  76. McGann, T.C.A. and Fox, P.F. (1974) Physico-chemical properties of casein micelles reformed from urea-treated milk. J. Dairy Res., 41, 45–53.CrossRefGoogle Scholar
  77. McMahon, D.J. and McManus, W.R. (1998) Rethinking casein micelle structure using electron microscopy. J. Dairy Sci., 81, 2985–93.CrossRefGoogle Scholar
  78. Neville, M.C., Keller, R.P., Casey, C. and Allen, J.C. (1994) Calcium partitioning in human and bovine milk. J. Dairy Sci., 77, 1964–75.CrossRefGoogle Scholar
  79. Niewold, T.A., Murphy, C.L., Hulskamp-Kloch, C.A.M., Tooten, P.C.J. and Gruys, E. (1999) Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid, 6, 244–9.Google Scholar
  80. Ono, T., Ohotawa, T. and Takagi, Y. (1994) Complexes of casein phosphopeptide and calcium phosphate prepared from casein micelles by tryptic digestion. Biosci. Biotech. Biochem., 58, 1376–80.CrossRefGoogle Scholar
  81. Payens, T.A.J. and Vreeman, H. (1982) Casein micelles and micelles of β-and κ-casein. In Solution Behaviour of Surfactants, Vol. 1, (K.L. Mittal and E.J. Fendler eds.) Plenum Publishing House, New York, pp. 543–71.CrossRefGoogle Scholar
  82. Pierre, A., Brulé, G. and Fauquant, J. (1983) Study of Ca exchange in milk using 45Ca. Lait, 63, 473–80.CrossRefGoogle Scholar
  83. Pierre, A., Michel, F., Le Graët, Y. and Zahoute, L. (1998) Composition of casein micelle size in relation with casein composition and αs1, αS2, β and κ casein contents in goat milk. Lait, 78, 591–605.CrossRefGoogle Scholar
  84. Pierre, A., Michel, F. and Zahoute, L. (1999) Composition of casein micelles in relation to size in goat milks with A and null αsl-casein variants. Int. Dairy J., 9, 179–82.CrossRefGoogle Scholar
  85. Rasmussen, L.K., Højrup, P. and Petersen, T.E. (1992a) Localisation of two interchain disulfide bridges in dimers of bovine αs2-casein. Parallel and antiparallel alignments of the polypeptide chains. Eur. J. Biochem., 203, 381–6.CrossRefGoogle Scholar
  86. Rasmussen, L.K., Højrup, P. and Petersen, T.E. (1992b) The multimeric structure and disulfide bonding pattern of bovine κ-casein. Eur. J. Biochem., 207, 215–22.CrossRefGoogle Scholar
  87. Rasmussen, L.K., Johnsen, L.B., Tsiora, A., Sørensen, E.S., Thomsen, J.K., Nielsen, N.C., Jakobsen, H.J. and Petersen, T.E. (1999) Disulphide linked caseins and casein micelles. Int. Dairy J., 9, 215–8.CrossRefGoogle Scholar
  88. Rollema, H.S. (1992) Casein association and micelle formation. In Advanced Dairy Chemistry Volume 1, (P.F. Fox ed.) Elsevier Applied Science, Barking, Essex, UK, pp. 111–40.Google Scholar
  89. Rollema, H.S. and Brinkhuis, J.A. (1989) A 1H-NMR study of bovine casein micelles; influence of pH, temperature and calcium ions on micellar structure. J. Dairy Res., 56, 417–25.CrossRefGoogle Scholar
  90. Rollema, H.S., Brinkhuis, J.A. and Vreeman, H.J. (1988) 1H-NMR studies of bovine κ-casein and casein micelles. Neth. Milk Dairy J., 42, 233–48.Google Scholar
  91. Schmidt, D.G. (1982) Association of caseins and casein micelle structure. In Developments in Dairy Chemistry, (P.F. Fox ed.) Applied Science Publishers, Barking, UK, pp. 61–86.Google Scholar
  92. Schweers, O., Schönbrunn-Hanebeck, E., Marx, A. and Mandelkow, E. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for β-structure. J. Biol. Chem., 269, 24290–7.Google Scholar
  93. Serpell, L.C., Berriman, J., Jakes, R., Goedert, M. and Crowther, R.A. (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation Proc. Natl. Acad. Sci., USA, 97, 4897–902.CrossRefGoogle Scholar
  94. Shewry, P.R. and Tatham, A.S. (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem. J., 267, 1–12.Google Scholar
  95. Simon, J-P. and Aunis, D. (1989) Biochemistry of the chromogranin A protein family. Biochemical J., 262, 1–13.Google Scholar
  96. Slattery, C.W. and Evard, R. (1973) A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta, 317, 529–38.CrossRefGoogle Scholar
  97. Smyth, E., Syme, CD., Blanch, E.W., Hecht, L., Vašák, M. and Barron, L.D. (2000) Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers, 58, 138–51.CrossRefGoogle Scholar
  98. Stenkamp, V.S. and Berg, J.C. (1997) The role of long tails in steric stabilization and hydrodynamic layer thickness. Langmuir, 13, 3827–32.CrossRefGoogle Scholar
  99. Stothart, P.H. and Cebula, D.J. (1982) Small-angle neutron scattering study of bovine casein micelles and sub-micelles. J. Mol. Biol., 160, 391–5.CrossRefGoogle Scholar
  100. Swaisgood, H.E. (1992) Chemistry of the caseins. In Advanced Dairy Chemistry Volume 1, (P.F. Fox ed.) Elsevier Applied Science, Barking, Essex, UK, pp. 63–110.Google Scholar
  101. Syrba, A. (1998) Polymer science concepts in dairy systems-An overview of milk protein and food hydrocolloid interactions. Int. Dairy J., 8, 179–94.CrossRefGoogle Scholar
  102. Thompson, M.P., Kalan, E.B. and Greenberg, R. (1967) Properties of caseins modified by treatment with carboxypeptidase A. J. Dairy Sci., 50, 767–9.CrossRefGoogle Scholar
  103. Tsuda, S., Niki, R., Kuwata, T., Tanaka, I. and Hickichi, K. (1991) Proton NMR study of casein phosphopeptide (1-25): assignment and conformation. Magn. Reson. Chem., 28, 1097–102.CrossRefGoogle Scholar
  104. Tuinier, R. and De Kruif, CG. (1999) Phase behaviour of casein micelles/ exocellular polysaccharide mixtures: experiment and theory. J. Chem. Phys., 110, 9296.CrossRefGoogle Scholar
  105. Tuinier, R., Ten Grotenhuis, E., Holt, C, Timmins, P.A. and De Kruif, CG. (1999a) Depletion interaction of casein micelles and an exocellular polysaccharide. Phys. Rev. E, 60, 848–56.CrossRefGoogle Scholar
  106. Tuinier, R., Zoon, P., Olieman, C, Cohen Stuart, M.A., Fleer, G.J. and De Kruif, CG. (1999b) Isolation and physical characterization of an exocellular polysaccharide. Biopolymers, 49, 1–9.CrossRefGoogle Scholar
  107. Tuinier, R., Dhont, J.K.G. and De Kruif, CG. (2000a) Depletion induced phase separation of aggregated whey proteins. Langmuir, 16, 1497–507.CrossRefGoogle Scholar
  108. Tuinier, R., Ten Grotenhuis, E. and De Kruif, CG. (2000b) The effect of depolymerised guar gum on the stability of skim milk. Food Hydrocolloid, 14, 1–7.CrossRefGoogle Scholar
  109. Tziboula, A. and Home, D.S. (1999) The role of αsl-casein in the structure of caprine casein micelles. Int. Dairy J., 9, 173–8.CrossRefGoogle Scholar
  110. Van Kemenade, M.J.J.M. (1988) Influence of Casein on Precipitation of Calcium Phosphates, PhD Thesis, van’t Hoff Laboratorium, Rijksuniversiteit Utrecht, The Netherlands.Google Scholar
  111. Vreeman, HJ., Brinkhuis, J.A. and Van der Spek, C.A. (1981) Some association properties of SH-κ-casein. Biophys. Chem., 14, 185–93.CrossRefGoogle Scholar
  112. Vreeman, H.J., Van Markwijk, B.W. and Both, P. (1989) The structure of casein micelles between pH 5.5 and 6.7 as determined by light scattering, electron microscopy and voluminosity experiments. J. Dairy Res., 56, 463–70.CrossRefGoogle Scholar
  113. Vrij, A. (1976) Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl. Chem., 48, 471–83.CrossRefGoogle Scholar
  114. Wahlgren, N.M., Dejmek, P. and Drakenberg, T. (1990) A 45Ca and 31P NMR study of the calcium and phosphate equilibria in heated milk solutions. J. Dairy Res., 57, 355–64.CrossRefGoogle Scholar
  115. Wahlgren, N.M., Léonil, J., Dejmek, P. and Drakenberg, T. (1993) Two dimensional nuclear magnetic resonance study of the β-casein peptide 1-25: resonance assignments and secondary structure. Biochim. Biophys. Acta, 1202, 121–8.CrossRefGoogle Scholar
  116. Wahlgren, N.M., Dejmek, P. and Drakenberg, T. (1994) Secondary structures in β-casein peptide 1-42: a two dimensional nuclear magnetic resonance study. J. Dairy Res., 61, 495–506.CrossRefGoogle Scholar
  117. Walstra, P. (1999) Casein sub-micelles: do they exist? Int. Dairy J., 9, 189–92.CrossRefGoogle Scholar
  118. Walstra, P., Bloomfield, V.A., Wei, G.J. and Jenness, R. (1981) Effect of chymosin action on the hydrodynamic diameter of casein micelles. Biochim. Biophys. Acta, 669, 258–9.CrossRefGoogle Scholar
  119. Waugh, D.F. (1971) Formation and structure of casein micelles. In Milk Proteins: Chemistry and Molecular Biology, Vol. 2, (H.A. McKenzie ed.) Academic Press, New York, pp. 3–85.Google Scholar
  120. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. and Lansbury, P.T., Jr. (1996) NACP, a protein implicated in Alzheimer’s disease and learning is natively unfolded. Biochemistry, 35, 13709–15.CrossRefGoogle Scholar
  121. Yamauchi, K., Yoneda, Y., Koga, Y. and Tsugo, T. (1969) Exchangeability of colloidal calcium in milk with soluble calcium. Agr. Biol. Chem., 33, 907–14.CrossRefGoogle Scholar
  122. Zhang, Z.P. and Aoki, T. (1996) Behaviour of calcium and phosphate in bovine casein micelles. Int. Dairy J., 6, 769–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • C. G. De Kruif
  • C. Holt

There are no affiliations available

Personalised recommendations