Skip to main content

Abstract

In the previous edition of Advanced Dairy Chemistry, Horne (1992) reviewed what was mainly his work and that of colleagues at the Hannah Research Institute on the effect of ethanol addition on the stability of the casein micelle system. These studies were part of the Institute’s wider programme on micellar stability, particularly on the effects of renneting or heating milk. In that context experiments were also carried out at sub-critical ethanol levels and contributed to the effective exploitation of the theories of steric stabilization as applied to the casein micelle, the so- called ‘hairy micelle’ model of Holt (1975) and Walstra (1979). Holt and Horne (1996) recently reviewed such work in this area. Models of internal micelle structure have also to be consistent with the observations of micellar behaviour in the presence of ethanol and here we ask how well the latest suggestions stand up to this test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayers, S.H. and Johnson Jr., W.T. (1915) The alcohol test in relation to milk. Bulletin No. 202, US Dept. Agric., Government Printing Office, Washington.

    Google Scholar 

  • Banks, W., Muir, D.D. and Wilson, A.G. (1981) Extension of the shelf-life of cream-based liqueurs at high ambient temperatures. J. Food Technol., 16, 587–95.

    Article  CAS  Google Scholar 

  • Banks, W. and Muir, D.D. (1988) Stability of alcohol-containing emulsions, in Advances in Food Emulsions and foams, (E. Dickinson and G. Stainsby eds.) Elsevier Applied Science, London, pp. 257–83.

    Google Scholar 

  • Brooksbank, D.V., Davidson, C.M., Home, D.S. and Leaver, J. (1993) Influence of electrostatic interactions on β-casein layers adsorbed on polystyrene latices. J. Chem Soc. Faraday Trans., 89, 3419–25.

    Article  CAS  Google Scholar 

  • Buchheim, W. and Welsch, U. (1973) Evidence for the submicellar composition of casein micelles on the basis of electron microscopical studies. Neth. Milk Dairy J., 27, 163–80.

    Google Scholar 

  • Carroll, R.J., Basch, J.J., Phillips, J.G. and Farrell, H.M., Jr. (1985) Ultrastructural and biochemical investigations of mature human milk. Food Microstruct., 4, 323–31.

    CAS  Google Scholar 

  • Dahlberg, A.O. and Garner, H.S. (1921) The alcohol test as a means of determining quality of milk for condenseries. Bulletin No. 944, US Dept. Agric., Government Printing Office, Washington.

    Google Scholar 

  • Dalgleish, D.G. and Parker, T.G. (1980) Binding of calcium ions to bovine αs1-casein and precipitability of the protein-calcium ion complex. J. Dairy Res., 47, 113–22.

    Article  CAS  Google Scholar 

  • Dalgleish, D.G., Paterson, E. and Home, D.S. (1981) Kinetics of aggregation of αs1-casein/Ca2+ mixtures: charge and temperature effects. Biophys. Chem., 13, 307–14.

    Article  CAS  Google Scholar 

  • Davies, D.T. and White, J.C.D. (1958) The relation between the chemical composition of milk and the stability of the casein complex II. Coagulation by ethanol. J. Dairy Res., 25, 256–66.

    Article  Google Scholar 

  • De Kruif, C.G. (1992) Casein micelles: diffusivity as a function of renneting time. Langmuir, 8, 2932–7.

    Article  Google Scholar 

  • De Kruif, C.G. (1998) Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci., 81, 3019–28.

    Article  Google Scholar 

  • De Kruif, C.G. (1999) Casein micelle interactions. Int. Dairy J., 9, 183–8.

    Article  Google Scholar 

  • Dickinson, E., Narham, S.K. and Stainsby, G. (1989) Factors affecting the properties of cohesive creams formed from cream liqueurs. J. Sci. Food Agric., 48, 225–34.

    Article  CAS  Google Scholar 

  • Donnelly, W.J. and Home, D.S. (1986) Relationship between ethanol stability of bovine milk and natural variations in milk composition. J. Dairy Res., 53, 23–33.

    Article  CAS  Google Scholar 

  • Farrell, H.M., Jr., Pessen, H. and Kumosinski, T.F. (1989) Water interactions with bovine caseins by hydrogen-2. Nuclear magnetic resonance relaxation studies: structural implications. J. Dairy Sci., 72, 562–74.

    Article  CAS  Google Scholar 

  • Fox, P.F. (1981) Heat-induced changes in milk preceding coagulation. J. Dairy Sci., 64, 2127–37.

    Article  CAS  Google Scholar 

  • Garvey, M.J., Tadros, Th.F. and Vincent, B. (1976) A comparison of the adsorbed layer thickness obtained by several techniques of various molecular weight fraction of poly (vinyl alcohol) on aqueous polystyrene latex particles. J. Colloid Interf. Sci., 55, 440–53.

    Article  CAS  Google Scholar 

  • Griffin, M.C.A. (1987) Structural studies of casein micelles using photon correlation spectroscopy. J. Colloid Interf. Sci., 115, 499–506.

    Article  CAS  Google Scholar 

  • Griffin, M.C.A. and Roberts, G.C.K. (1985) A 1H-NMR study of casein micelles. Biechem, J., 228, 273–6

    CAS  Google Scholar 

  • Oriffin, M.C.A., Price, J.C. and Griffin, W.G. (1989) Variation of the viscosity of a concentrated, sterically stabilized colloid: effect of ethanol on casein micelles of bovine milk. J. Colloid Interf. Sci., 128, 223–9.

    Article  Google Scholar 

  • Guo, M.R., Wang, S., Li, Z., Qu, J., Jin, L. and Kindstedt, P.S. (1998) Ethanol stability of goat’s milk. Int. Dairy J., 8, 57–60.

    Article  CAS  Google Scholar 

  • Hansen, S., Bauer, R., Lomholt, S.B., Qvist, K.B., Pedersen, J.S. and Mortensen, K. (1996) Structure of casein micelles studied by small angle neutron scattering. Eur. Biophys. J., 14, 143–7.

    Google Scholar 

  • Hilgemann, M. and Jenness, R. (1951) Observations on the effect of heat treatment upon the dissolved calcium and phosphorus in skim milk. J. Dairy Sci., 34, 483–4.

    Google Scholar 

  • Holt, C. (1975) The stability of casein micelles, in Proceedings of an International Conference on Colloid and Surface Science, Budapest, Vol. 1, (E. Wolfram ed.) Akademia Kiado, Budapest, pp. 641–4.

    Google Scholar 

  • Holt, C. (1992) Structure and stability of the bovine casein micelle, in Advances in Protein Chemistry, Vol. 43, (C.B. Anfinsen, J.D. Edsall, F.K. Richards and D.S. Eisenberg eds.) Academic Press, New York, pp. 63–151.

    Google Scholar 

  • Holt, C. and Dalgleish, D.G. (1986) Electrophoresis and hydrodynamic properties of bovine casein micelles interpreted terms of particles with an outer hairy layer. J. Colloid Interf. Sci., 114, 513–24.

    Article  CAS  Google Scholar 

  • Holt, C. and Home, D.S. (1996) The hairy casein micelle: evolution of the concept and its implications for dairy technology. Neth. Milk Dairy J., 50, 85–111.

    CAS  Google Scholar 

  • Holt, C., Davies, D.T. and Law, A.J.R. (1986) The effects of colloidal calcium phosphate content and milk serum free calcium ion concentration on the dissociation of bovine casein micelles. J. Dairy Res., 53, 557–72.

    Article  CAS  Google Scholar 

  • Home, D.S. (1984) Steric effects in the coagulation of casein micelles by ethanol. Biopolymers, 23, 989–93.

    Article  Google Scholar 

  • Home, D.S. (1986) Steric stabiliztion and casein micelle stability. J. Colloid Interf. Sci., 111, 250–60.

    Article  Google Scholar 

  • Home, D.S. (1987) Ethanol stability of casein micelles-a hypothesis concerning the role of calcium phosphate. J. Dairy Res., 54, 389–95.

    Article  Google Scholar 

  • Home, D.S. (1992) Ethanol stability, in Advanced Dairy Chemistry 1: Proteins, 2nd edn., (P.F. Fox ed.) Elsevier Applied Science, London, pp. 657–81.

    Google Scholar 

  • Home, D.S. (1998) Casein interactions: casting light on the black boxes, the structure of dairy products. Int. Dairy J., 8, 171–7.

    Article  Google Scholar 

  • Home, D.S. and Dalgleish, D.G. (1980) Electrostatic interaction and the kinetics of protein aggregation: αs1-casein. Int. J. Biol. Macromol., 2, 154–60.

    Article  Google Scholar 

  • Home, D.S. and Dalgleish, D.G. (1985) A photon correlation spectroscopy study of size distributions of casein micelle suspensions. Eur. Biophys. J., 11, 249–58.

    Google Scholar 

  • Home, D.S. and Davidson, C.M. (1986) The effect of environmental conditions on the steric stabilization of casein micelles. Colloid Polym. Sci., 264, 727–34.

    Article  Google Scholar 

  • Home, D.S. and Davidson, C.M. (1987) Alcohol stability of bovine skim milk. Anomalous effects with trifluoroethanol. Milchwissenschaft, 42, 509–12.

    Google Scholar 

  • Home, D.S. and Davidson, C.M. (1993) Direct observation of decrease in size of casein micelles during initial stages of renneting of skim milk. Int. Dairy J., 3, 61–71.

    Article  Google Scholar 

  • Home, D.S. and Muir, D.D. (1990) Alcohol and heat stability of milk protein. J. Dairy Sci., 73, 3613–26.

    Article  Google Scholar 

  • Home, D.S. and Parker, T.G. (1980) The pH sensitivity of the ethanol stability of individual cow milks. Neth. Milk Dairy J., 34, 126–30.

    Google Scholar 

  • Home, D.S. and Parker, T.G. (1981a) Factors affecting the ethanol stability of bovine milk. I. Effect of serum phase components J. Dairy Res., 48, 273–84.

    Article  Google Scholar 

  • Home, D.S. and Parker, T.H. (1981b) Factors affecting the ethanol stability of bovine milk. II. The origin of the pH transition. J. Dairy Res., 48, 285–91.

    Article  Google Scholar 

  • Home, D.S. and Parker, T.G. (1981c) Factors affecting the ethanol stability of bovine casein micelles: 3. Substitution of ethanol by other organic solvents. Int. J. Biol. Macromoi., 3, 399–402.

    Article  Google Scholar 

  • Hörne, D.S. and Parker, T.G. (1981d) Factors affecting the ethanol stability of bovine milk. IV. Effect of forewarming. J. Dairy Res., 48, 405–15.

    Article  Google Scholar 

  • Home, D.S. and Parker, T.G. (1982) Some aspects of the ethanol stability of caprine milk. J. Dairy Res., 49, 459–68.

    Article  Google Scholar 

  • Home, D.S. and Parker, T.G. (1983) Factors affecting the ethanol stability of bovine milk. VI. Effect of concentration. J. Dairy Res., 50, 425–32.

    Article  Google Scholar 

  • Home, D.S., Parker, T.G. and Dalgleish, D.G. (1989) Casein micelles, polyconden-sation and fractals, in Food Colloids, (R.D. Bee, P. Richmond and J. Mingins eds.) Special publication No. 75, Royal Society of Chemistry, London, pp. 400–5.

    Google Scholar 

  • Home, D.S., Parker, T.G., Donnelly, W.J. and Davies, D.T. (1986) Factors affecting the ethanol stability of bovine skim milk. VII., Lactational and compositional effects. J. Dairy Res., 53, 407–17.

    Article  Google Scholar 

  • Jenness, R. and Patton, S. (1959) Principles of Dairy Chemistry, Wiley, New York.

    Google Scholar 

  • Kalab, M., Phibbs-Todd, B.E. and Allan-Wojtas, P. (1982) Milk gel structure XIII. Rotary shadowing of casein micelles for electron microscopy. Milchwissenschaft, 37, 513–8.

    CAS  Google Scholar 

  • Knoop, A.M., Knoop, E. and Weichen, A. (1973) Electron microscopical investigations on the structure of casein micelles. Neth. Milk Dairy J., 27, 121–7.

    CAS  Google Scholar 

  • Kumosinski, T.F., Pessen, H., Prestrelski, J.T. and Farrell, H.M., Jr. (1987) Water interactions with varying molecular states of bovine casein: 2H-NMR relaxation studies. Arch. Biochem. Biophys., 257, 259–68.

    Article  CAS  Google Scholar 

  • Lyster, R.L.J., Mann, S., Parker, S.B. and Williams, R.J.P. (1984) Nature of micellar calcium phosphate in cows’ milk as studied by high-resolution electron microscopy. Biochim. Biophys. Acta, 801, 315–7.

    Article  CAS  Google Scholar 

  • McGann, T.C.A., Donnelly, W.J., Kearney, R.D. and Buchheim, W. (1980) Composition and size distribution of bovine casein micelles. Biochim. Biophys. Acta, 630, 261–70.

    Article  CAS  Google Scholar 

  • McMahon, D.J. and McManus, W.R. (1998) Rethinking casein micelle structure using electron microscopy. J. Dairy Sci., 81, 2985–93.

    Article  CAS  Google Scholar 

  • Miller, P.G. and Sommer, H.H (1940) The coagulation temperature of milk as affected by pH, salts, evaporation and previous heat treatment. J. Dairy Sci., 23, 405–21.

    Article  CAS  Google Scholar 

  • Mitamura, K. (1937) Studies on the alcohol coagulation of fresh cow milk. J. Fac. Agric. Hokkaido Univ., 41, 97–362.

    CAS  Google Scholar 

  • Muir, D.D. and Banks, W. (1986) Multiple homogenization of cream liqueurs. J. Food Technol., 21, 229–32.

    Article  Google Scholar 

  • Padmos, W.H. (1930) On the value of the alcohol test for the appraisal of milk. J. Dairy Res., 1, 201 (abst.).

    Google Scholar 

  • Payens, T.A.J. and Schmidt, D.G. (1966) Boundary spreading of rapidly polymerizing αs1-casein B and C during sedimentation. Numerical solutions of the Lamm-Gilbert-Fujita equation. Arch. Biochem. Biophys., 115, 136–45.

    Article  CAS  Google Scholar 

  • Pessen, H., Kumosinski, T.F. and Farrell, H.M., Jr. (1989) Small-angle X-ray scattering investigation of the micellar and submicellar forms of bovine casein. J. Dairy Res., 56, 443–51.

    Article  Google Scholar 

  • Pierre, A. (1985) Milk coagulation by alcohol. Studies on the solubility of the milk calcium and phosphate in alcoholic solutions. Lait, 65, 201–12.

    Article  CAS  Google Scholar 

  • Post, C.B. and Zimm, B.H. (1982) Theory of DNA condensation: Collapse versus aggregation. Biopolymers, 21, 2123–37.

    Article  CAS  Google Scholar 

  • Ramsdell, G.A., Johnson, W.T., Jr. and Evans, F.R. (1931) A test for the detection of milk unstable of heat. J. Dairy Sci., 14, 93–106.

    Article  CAS  Google Scholar 

  • Rollema, H.S., Brinkhuis, J.A. and Vreeman, H.J. (1988) 1H-NMR studies of bovine κ-casein and casein micelles. Neth. Milk Dairy J., 42, 233–48.

    CAS  Google Scholar 

  • Rose, D. (1961a) Variations in the heat stability and composition of milk from individual cows during lactation. J. Dairy Sci., 44, 430–41.

    Article  CAS  Google Scholar 

  • Rose, D. (1961b) Factors affecting the pH-sensitivity of the heat stability of milk from individual cows. J. Dairy Sci., 44, 1405–13.

    Article  CAS  Google Scholar 

  • Shimmin, P.D. and Hill, R.D. (1964) An electron microscope study of the internal structure of casein micelles. J. Dairy Res., 31, 121–3.

    Article  Google Scholar 

  • Schmidt, D.G. (1970a) The association of αs1-casein at pH 6.6. Biochim. Biophys. Acta, 207, 130–8.

    Article  CAS  Google Scholar 

  • Schmidt, D.G. (1970b) Differences between the association of the genetic variants B,C and D of αs1-casein. Biochim. Biophys. Acta, 221, 140–2.

    Article  CAS  Google Scholar 

  • Schmidt, D.G. (1982) Association of caseins and casein micelle structure, in Developments in Dairy Chemistry 1: Proteins, (P.F. Fox ed.) Elsevier Applied Science, London, pp. 61–86.

    Google Scholar 

  • Schmidt, D.G. and Buchheim, W. (1970) An electron-microscopical investigation of the sub-structure of the casein micelles in cows’ milk. Milchwissenschaft, 25, 596–600.

    CAS  Google Scholar 

  • Schmidt, D.G., Walstra, P. and Buchheim, W. (1973) The size distribution of casein micelles in cow’s milk. Neth. Milk dairy J., 27, 128–42.

    Google Scholar 

  • Sommer, H.H. and Binney, T.H. (1923). A study of the factors that influence the coagulation of milk in the alcohol test. J. Dairy Sci., 6, 176–97.

    Article  CAS  Google Scholar 

  • Sommer, H.H. and Hart, E.B. (1919) The heat coagulation of milk. J. Biol. Chem., 40, 137–51.

    CAS  Google Scholar 

  • Stothart, P.R. and Cebula, D.J. (1982) Small-angle neutron scattering study of bovine casein micelles and submicelles. J. Mol. Biol., 160, 391–5.

    Article  CAS  Google Scholar 

  • Ter Beek, L.C., Ketelaars, M., McCain, D., Smulders, P.E.A., Walstra, P. and Hemminga, M.A. (1996) Nuclear magnetic resonance study of the conformation and dynamics of β-casein at the oil/water interface in emulsions. Biophys. J., 70, 2396–402.

    Article  Google Scholar 

  • Unnikrishnan, V., Bhavadasan, M.K. and Rama Murthy, M.K. (1988) Alcohol stability of buffalo milk. Ind. J. Dairy Sci., 41, 421–6.

    Google Scholar 

  • Walstra, P. (1979) The voluminosity of bovine casein micelles and some of its implications. J. Dairy Res., 49, 317–23.

    Article  Google Scholar 

  • Walstra, P. (1990) On the stability of casein micelles. J. Dairy Sci., 73, 1965–79.

    Article  CAS  Google Scholar 

  • Walstra, P. (1999) Casein sub-micelles: Do they exist? Int. Dairy J., 9, 189–92.

    Article  CAS  Google Scholar 

  • Walstra, P., Bloomfield, V.A., Wei, G.J. and Jenness, R. (1981) Effects of chymosin action on the hydrodynamic diameter of casein micelles. Biochim. Biophys. Acta, 669, 258–9.

    Article  CAS  Google Scholar 

  • White, J.C.D. and Davies, D.T. (1958) The relation between the chemical composition of milk and the stability of the caseinate complex. I. General introduction, description of samples, methods and chemical composition of samples. J. Dairy Res., 25, 236–55.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horne, D.S. (2003). Ethanol Stability. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics