Skip to main content

Abstract

The presence of indigenous proteolytic activity in milk has been recognized since the work of Babcock and Russel in 1897. Some early researchers attributed this activity to bacterial enzymes, but later work proved conclusively the presence of indigenous proteinases in milk. More recent research has indicated two major categories of indigenous proteolytic enzymes in milk, both originating from the animal’s blood. The major enzyme system contains plasmin, which is produced by activation of its inactive precursor, plasminogen, an event which is under the control of a complex system of inhibitors and activators. The presence of plasmin in milk and its significance to the quality of dairy products has been recognized for many decades (see Bastain and Brown, 1996, for review) and has thus been the subject of much research. However, the other indigenous proteolytic enzymes in milk, which originate from somatic cells, have been studied in detail only during the last decade. Somatic cells, the principal physiological function of which is the defence of the udder against bacterial infection, have lysosomes which contain active proteolytic enzymes, including elastase, collagenase and cathepsins B, D, G, H and L. The acid proteinase originating from somatic cells, cathepsin D, has been studied most thoroughly in milk. However, it is highly likely that the other proteinases known to be present in lysosomes are also present in milk, as has been demonstrated by the recent identification of immunoreactive cathepsin B in milk (Magboul et al., 2001) and observations of the activity of other indigenous thiol proteinases in milk. This chapter will review recent research on plasmin and its role in the quality of dairy products and will focus also on other indigenous proteinases, which have not been reviewed thoroughly elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aimutis, W.R. and Eigel, W.N. (1982) Identification of λ-casein as plasmin-derived fragments of bovine αs1-casein. J. Dairy Sci., 65, 175–81.

    CAS  Google Scholar 

  • Alichinidas, E., Wrathall, J.H. and Andrews, A.T. (1986) Heat stability of plasmin (milk proteinase) and plasminogen. J. Dairy Res., 53, 259–69.

    Google Scholar 

  • Andrews, A.T. (1983) Breakdown of caseins by proteinases in bovine milks with high somatic cell counts arising from mastitis or infusion with bacterial endotoxin. J. Dairy Res., 50, 57–66.

    CAS  Google Scholar 

  • Andrews, A.T. and Alichanidis, E. (1983) Proteolysis of caseins and the proteose peptone fraction of bovine milk. J. Dairy Res., 50, 275–90.

    CAS  Google Scholar 

  • Aslam, M. and Hurley, W.L. (1997) Proteolysis of milk proteins during involution of the bovine mammary gland. J. Dairy Sci., 80, 2004–10.

    CAS  Google Scholar 

  • Aslam, M. and Hurley, W.L. (1998) Peptides generated from milk proteins in the bovine mammary gland during involution. J. Dairy Sci., 81, 748–55.

    CAS  Google Scholar 

  • Athie, F., Bachman, K.C., Head, H.H., Hayen, M.J. and Wilcox, C.J. (1997) Milk plasmin during bovine mammary gland involution that has been accelerated by estrogen. J. Dairy Sci., 80, 1561–8.

    CAS  Google Scholar 

  • Baer, A., Ryba, I. and Collin, J.-C. (1994) Binding of bovine plasminogen to immobilised casein and its activation thereon. Int. Dairy J., 4, 597–616.

    CAS  Google Scholar 

  • Baldi, A., Savioni, G., Cheli, F., Fantuz, F., Senatore, E., Bertocchi, L. and Politis, I. (1996) Changes in plasmin-plasminogen-plasminogen activator system in milk from Italian Friesian herds. Int. Dairy J., 6, 1045–53.

    CAS  Google Scholar 

  • Ballou, L.U., Pasquine, M., Bremel, R.D., Everson, T. and Sommer, D. (1995) Factors affecting herd milk composition and milk plasmin at four levels of somatic cell counts. J. Dairy Sci., 78, 2186–95.

    CAS  Google Scholar 

  • Barbano, D.M., Rasmussen, R.R. and Lynch, J.M. (1991) Influence of milk somatic cell count and milk age on cheese yield. J. Dairy Sci., 74, 369–88.

    Google Scholar 

  • Barrett, A.J. (1972) Lysosomal enzymes. In Lysosomes, a Laboratory Handbook, (J.T. Dingle, ed.) North Holland Publishers, Amsterdam, pp. 46–135.

    Google Scholar 

  • Barrett, A.J. and Kirschke, H. (1981) Cathepsin B, cathepsin H and cathepsin L. Methods in Enzymology, 80, 535–61.

    CAS  Google Scholar 

  • Barrett, F.M., Kelly, A.L., McSweeney, P.L.H. and Fox, P.F. (1999) Use of exogenous urokinase to accelerate proteolysis in Cheddar cheese during ripening. Int. Dairy J., 9, 421–7.

    CAS  Google Scholar 

  • Barry, J.G. and Donnelly, W.J. (1981) Casein compositional studies. II. The effect of secretory disturbance on casein composition in freshly drawn and aged bovine milks. J. Dairy Res., 48, 437–46.

    CAS  Google Scholar 

  • Bastian, E.D. and Brown, R.J. (1996) Plasmin in milk and dairy products: an update. Int. Dairy J., 6, 435–57.

    CAS  Google Scholar 

  • Bastian, E.D., Brown, R.J. and Ernstrom, C.A. (1991a) Plasmin activity and milk coagulation. J. Dairy Sci., 74, 3677–85.

    CAS  Google Scholar 

  • Bastian, E.D., Hansen, K.G. and Brown, R.J. (1991b) Activation of plasmin with urokinase in ultrafiltered milk for cheese manufacture. J. Dairy Sci., 74, 3669–76.

    CAS  Google Scholar 

  • Bastian, E.D., Hansen, K.G. and Brown, R.J. (1993) Inhibition of plasmin by β-lactoglobulin using casein and a synthetic substrate. J. Dairy Sci., 76, 3354–61.

    CAS  Google Scholar 

  • Benfeldt, C., Larsen, L.B., Rasmussen, J.T., Andreasen, P.A. and Petersen, T.E. (1995) Isolation and characterization of plasminogen and plasmin from bovine milk. Int. Dairy J., 5, 577–92.

    CAS  Google Scholar 

  • Benfeldt, C., Sorensen, J., Ellegard, K.H. and Petersen, T.E. (1997) Heat treatment of cheese milk: Effect on plasmin activity and proteolysis during cheese ripening. Int. Dairy J., 7, 723–31.

    CAS  Google Scholar 

  • Benslimane, S., Dognin-Bergeret, M.J., Berdague, J.L. and Gaudemer, Y. (1990) Variation with season and lactation of plasmin and plasminogen concentrations in Montbeliard cows’ milk. J. Dairy Res., 57, 423–35.

    CAS  Google Scholar 

  • Berglund, L., Andersen, M.D. and Petersen, T.E. (1995) Cloning and characterization of the bovine plasminogen cDNA. Int. Dairy J., 5, 593–603.

    CAS  Google Scholar 

  • Beuvier, E., Berthaud, K., Cegarra, S., Dasen, A., Pochet, S., Buchin, S. and Duboz, G. (1997) Ripening and quality of Swiss-type cheese made from raw, pasteurised or microfiltered milk. Int. Dairy J., 7, 311–23.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Gruppen, H., Slangen, C.J., Visser, S. and Voragen, A.G.J. (1999a) Functionality of beta-casein peptides: importance of amphipathicity for emulsion stabilizing properties. J. Agric. Food Chem., 47, 1856–62.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Visser, S., Gruppen, H. and Voragen, A.G.J. (1999b) β-Lactoglobulin hydrolysis. 1. Peptide composition and functional properties of hydrolysates obtained by the action of plasmin, trypsin and Staphylococcus aureus V8 protease. J. Agric. Food Chem., 47, 2973–9.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Daamen, W.F., Gruppen, H., Visser, S. and Voragen, A.G.J. (1999c) β-Lactoglobulin hydrolysis. 2. Peptide identification, SH/SS exchange, and functional properties of hydrolysate fractions formed by the action of plasmin. J. Agric. Food Chem., 47, 2980–90.

    CAS  Google Scholar 

  • Caessens, P.W.J.R., Visser, S., Gruppen, H., van Aken, G.A. and Voragen, A.G.J. (1999d) Emulsion and foam properties of plasmin-derived beta-casein peptides. Int. Dairy J., 9, 347–51.

    CAS  Google Scholar 

  • Cauvin, E., Sacchi, P., Rasero, R. and Turi, R.M. (1999) Proteolytic activity during storage of UHT milk. Industrie Alimentari, 38, 825–29.

    CAS  Google Scholar 

  • Christensen, S. and Sottrup-Jensen, L. (1994) Characterization of two serpins from bovine plasmin and milk. Biochem. J., 303, 383–90.

    CAS  Google Scholar 

  • Christensen, S., Wiegers, T., Hermansen, J. and Sottrup-Jensen, L. (1995) Plasma-derived protease inhibitors in bovine milk. Int. Dairy J., 5, 439–49.

    CAS  Google Scholar 

  • Conner, G.E. and Richo, G. (1992) Isolation and characterisation of a stable activation intermediate of a lysosomal aspartyl protease, cathepsin D. Biochemistry, 31, 1142–7.

    CAS  Google Scholar 

  • Considine, T. (2000) Role of Somatic Cell Proteinases in Dairy Product Quality, PhD Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Considine, T., Healy, A., Kelly, A.L. and McSweeney, P.L.H. (1999) Proteolytic specificity of elastase on bovine β-casein. Food Chem., 66, 463–70.

    CAS  Google Scholar 

  • Considine, T., Healy, A., Kelly, A.L. and McSweeney, P.L.H. (2000) Proteolytic specificity of elastase on bovine αs1-casein. Food Chem., 69, 19–26.

    CAS  Google Scholar 

  • Considine, T., Geary, S., Kelly, A.L. and McSweeney, P.L.H. (2002) Proteolytic specificity of cathepsin G on bovine αs1-and β-caseins. Food Chem., 76, 59–67.

    CAS  Google Scholar 

  • Deharvang, G. and Nielsen, S.S. (1991) Partial purification and characterisation of native plasminogen activators from bovine milk. J. Dairy Sci., 74, 2060–72.

    Google Scholar 

  • de Rham, O. and Andrews, A.T. (1982) Qualitative and quantitative determination of proteolysis in mastitic milks. J. Dairy Res., 49, 587–96.

    Google Scholar 

  • Donnelly, W.J. and Barry, J.G. (1983) Casein compositional studies. III. Changes in Irish milk for manufacturing and role of milk proteinase. J. Dairy Res., 50, 433–41.

    CAS  Google Scholar 

  • Donnelly, W.J., Barry, J.G. and Buchheim, W. (1984) Casein micelle composition and syneretic properties of late lactation milk. Irish J. Food Sci. Technol., 8, 121–30.

    CAS  Google Scholar 

  • Driessen, F.M., van Hooydonk, A., Streuper, A. and Kingma, F. (1981) Influence of native milk proteinase on the viscosity of UHT-sterilized custard during storage. Neth. Milk Dairy J., 35, 121–31.

    CAS  Google Scholar 

  • Dupont, D., Bailly, C., Grosclaude, J. and Collin, J.-C. (1997) Differential titration of plasmin and plasminogen in milk using sandwich ELISA with monoclonal antibodies. J. Dairy Res., 64, 77–86.

    CAS  Google Scholar 

  • Dupont, D., Remond, B. and Collin, J.-C. (1998) ELISA determination of plasmin and plasminogen in milk of individual cows managed without the dry period. Milchwissenschaft, 53, 66–9.

    CAS  Google Scholar 

  • Eigel, N. (1977) Effect of bovine plasmin on αs1-B and K-A caseins. J. Dairy Sci., 60, 1399–406.

    CAS  Google Scholar 

  • Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell. H.M., Jr., Harwalkar, V.R., Jenness, R. and Whitney, R.McL. (1984) Nomenclature of the protein of cow’s milk. 5th revision. J. Dairy Sci., 67, 1599–631.

    CAS  Google Scholar 

  • Enright E. and Kelly A.L. (1999) The influence of heat treatment of milk on susceptibility of casein to proteolytic attack by plasmin. Milchwissenschaft, 54, 491–3.

    CAS  Google Scholar 

  • Enright E., Bland, A.P., Needs, E.G. and Kelly A.L. (1999) Proteolysis and physicochemical changes in milk on storage as affected by UHT treatment, plasmin activity and KIO3 addition. Int. Dairy J., 9, 581–91.

    CAS  Google Scholar 

  • Fajardo, C.E. and Nielsen, S.S. (1998) Effect of psychrotrophic microorganisms on the plasmin system in milk. J. Dairy Sci., 81, 901–8.

    Google Scholar 

  • Fajardo-Lira, C., Oria, M., Hayes, K.D. and Nielsen, S.S. (2000) Effect of psychotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk. J. Dairy Sci., 83, 2190–9.

    CAS  Google Scholar 

  • Farkye, N.Y. and Fox, P.F. (1990) Observations on plasmin activity in cheese. J. Dairy Res., 57, 413–8.

    CAS  Google Scholar 

  • Farkye, N.Y. and Fox, P.F. (1991) Preliminary study on the contribution of plasmin to proteolysis in Cheddar cheese: cheese containing plasmin inhibitor, 6-amino-hexanoic acid. J. Agric. Food Chem., 39, 786–8.

    CAS  Google Scholar 

  • Farkye, N.Y. and Fox, P.F. (1992) Contribution of plasmin to Cheddar cheese ripening: Effect of added plasmin. J. Dairy Res., 59, 209–16.

    CAS  Google Scholar 

  • Farkye, N.Y. and Landkammer, C.F. (1992) Milk plasmin activity influence on Cheddar cheese quality during ripening. J. Food Sci., 57, 622–4, 639.

    CAS  Google Scholar 

  • Fox, P.F., Singh, T.K. and McSweeney, P.L.H. (1994) Proteolysis in cheese during ripening, in Biochemistry of Milk Products, (A.T. Andrews and J. Varley eds.) Royal Society of Chemistry, Cambridge, pp. 1–31.

    Google Scholar 

  • Garcia-Risco, M.R., Cortes, E., Carrascosa A.V. and Lopez-Fandino, R. (1998) Microbiological and chemical changes in high-pressure-treated milk during refrigerated storage. J. Food Prot., 61, 735–7.

    CAS  Google Scholar 

  • Gilmore, J.A., White, J.H., Zavizon, B. and Politis, I. (1995) Effects of stage of lactation and somatic cell count on plasminogen activator activity in bovine milk. J. Dairy Res., 62, 141–5.

    CAS  Google Scholar 

  • Grieve, P.A. and Kitchen, B.J. (1985) Proteolysis in milk: the significance of proteinases originating from milk leucocytes and a comparison of the action of leucocyte, bacterial and natural milk proteinases on casein. J. Dairy Res., 52, 101–12.

    CAS  Google Scholar 

  • Grufferty, M.B. and Fox, P.F. (1986) Potassium iodate-induced proteolysis in ultra heat treated milk during storage: the role of β-lactoglobulin and plasmin. J. Dairy Res., 53, 601–13.

    CAS  Google Scholar 

  • Grufferty, M.B. and Fox, P.F. (1988a) Milk alkaline proteinase. J. Dairy Res., 55, 609–30.

    CAS  Google Scholar 

  • Grufferty, M.B. and Fox, P.F. (1988b) Functional properties of casein hydrolysed by alkaline milk proteinase. N. Z. J. Dairy Sci. Technol., 23, 95–108.

    CAS  Google Scholar 

  • Grufferty, M.B. and Fox, P.F. (1988c) Heat stability of the plasmin system in milk and casein systems. N. Z. J. Dairy Sci. Technol., 23, 143–52.

    CAS  Google Scholar 

  • Grufferty, M.B. and Fox, P.F. (1988d) Factors affecting the release of plasmin activity from casein micelles. N. Z. J. Dairy Sci. Technol., 23, 153–63.

    CAS  Google Scholar 

  • Guinot-Thomas, P., Al Ammourry, M., LeRoux, Y. and Laurent, F. (1995) Study of proteolysis during storage of raw milk at 4°C: effect of plasmin and microbial proteinases. Int. Dairy J., 5, 685–97.

    CAS  Google Scholar 

  • Halpaap, I., Reimerdes, E.H. and Klostermeyer, H. (1977) Milk proteinases. VI. Comparative isolation of plasminogen from bovine blood and a proteinase from cow’s milk. Milchwissenschaft, 32, 341–6.

    CAS  Google Scholar 

  • Harwalkar, V.R., Cholette, H., McKellar, R.C. and Emmons, D.B. (1993) Relation between proteolysis and astringent off-flavour in millk. J. Dairy Sci., 76, 2521–7.

    CAS  Google Scholar 

  • Hayes, K.D. and Nielsen, S.S. (2000) Plasmin levels in fresh milk, whey and commercial whey protein products. J. Dairy Sci., 83, 387–94.

    CAS  Google Scholar 

  • Hayes, M.G., Hurley, M.J., Larsen, L.B., Heegaard, C.W., Magboul, A.A.A., Oliveira, J.C., McSweeney, P.L.H. and Kelly, A.L. (2001) Thermal inactivation kinetics of bovine cathepsin D. J. Dairy Res. 68, 267–76.

    CAS  Google Scholar 

  • Hayes, M.G., McSweeney, P.L.H. and Kelly, A.L. (2002) The influence of native and heat-denatured whey proteins on plasmin activity. Milchwissenschaft (in press).

    Google Scholar 

  • Heegard, C.W., Rasmumssen, L.K. and Andreasen, P.A. (1994) The plasminogen activation system in bovine milk: differential localisation of tissue-type plasminogen activator and urokinase in milk fractions is caused by binding to casein and urokinase receptor. Biochim. Biophys. Acta, 1222, 45–55.

    Google Scholar 

  • Honkanen-Buzalski, T. and Sandholm, M. (1981) Trypsin-inhibitors in mastitic milk and colostrum: correlation between trypsin-inhibitor capacity, bovine serum albumin and somatic cell counts. J. Dairy Res., 48, 213–23.

    CAS  Google Scholar 

  • Hurley, M.J., Larsen, L.B., Kelly, A.L. and McSweeney, P.L.H. (2000) Cathepsin D activity in Quarg. Int. Dairy J., 10, 453–8.

    CAS  Google Scholar 

  • Igarashi, Y. (1990) Enhancement of proteolysis in bovine skim milk by heat and chemical treatment. J. Dairy Res., 57, 541–8.

    CAS  Google Scholar 

  • Igoshi, K., Kaminagowa, S. and Yamauchi, K. (1986) Profile of proteinases in Gouda-type cheese. J. Dairy Sci., 69, 2018–26.

    CAS  Google Scholar 

  • Johnson, L.B., Ravn, P., Berglund, L., Petersen, T.E., Rasmussen, L.K., Heegard, C.W., Rasussen, J.T., Benfeldt, C. and Fedosov, S.N. (1998) A refined kinetic analysis of plasminogen activation by recombinant bovine tissue-type plasminogen activator indicates two interconvertible activator forms. Biochemistry, 37, 12631–9.

    Google Scholar 

  • Jolivet, P., Queiroz Macedo, I., Wu, M. and Meunier, J.-C. (2000) Plasmin digestion of bovine β-casein dephosphorylated with one protein phosphatase type 2A purified from Yarrowia lipolytica. Lait, 80, 517–26.

    CAS  Google Scholar 

  • Kaartinen, L. and Pyörálá, S. (1989) Changes in milk plasminogen, plasmin and in vitro bacterial growth in whey during early lactation. J. Dairy Res., 56, 719–25.

    Google Scholar 

  • Kaminogawa, S. and Yamauchi, K. (1972) Acid protease of bovine milk. Agric. Biol. Chem., 36, 2351–6.

    CAS  Google Scholar 

  • Kaminogawa, S., Yamauchi, K., Miyazawa, S. and Koga, Y. (1980) Degradation of casein components by acid protease of bovine milk. J. Dairy Sci., 63, 701–1.

    CAS  Google Scholar 

  • Kang, Y.-J. and Frank, J.F. (1988) Proteolysis of high quality raw milk during storage at various temperatures. J. Dairy Sci., 71, 1484–91.

    CAS  Google Scholar 

  • Kelly, A.L. (1999) The influence of heat treatment of milk on proteolysis in Cheddar cheese during ripening. Milchwissenschaft, 54, 682–5.

    CAS  Google Scholar 

  • Kelly, A.L. and Foley, J. (1997) Proteolysis and storage stability of UHT milk as influenced by milk plasmin activity, plasmin/β-lactoglobulin complexation, plasminogen activation and somatic cell count. Int. Dairy J., 7, 411–20.

    CAS  Google Scholar 

  • Kelly, A.L., Reid, S., Joyce, P., Meaney, W.J. and Foley, J. (1998) Effect of decreased milking frequency of cows in late lactation on milk somatic cell count, polymorphonuclear leucocyte numbers, composition and enzymology. J. Dairy Res., 65, 365–73.

    CAS  Google Scholar 

  • Kennedy, A. and Kelly, A.L. (1997) The influence of somatic cell count on the heat stability of bovine milk plasmin activity. Int. Dairy J., 7, 717–21.

    CAS  Google Scholar 

  • Kohlmann, K.L., Nielsen, S.S. and Ladisch, M.R. (1988) Effect of serine proteolytic enzymes (trypsin and plasmin), trypsin inhibitor and plasminogen activator addition to ultra-high temperature processed milk. J. Dairy Sci., 71, 1728–39.

    CAS  Google Scholar 

  • Kohlmann, K.L., Nielsen, S.S. and Ladisch, M.R. (1991) Effect of a low concentration of added plasmin on ultra-high temperature processed milk. J. Dairy Sci., 74, 1151–6.

    CAS  Google Scholar 

  • Lane, C.N. and Fox, P.F. (1999) The individual or combined action of chymosin and plasmin on sodium caseinate or β-casein in solution: effect of NaCl and pH. Lait, 79, 423–34.

    CAS  Google Scholar 

  • Larsen, L.B., Boisen, A. and Petersen, T.E. (1993) Procathepsin D cannot autoactivate to cathepsin D at acid pH. FEBS Lett., 319, 54–8.

    CAS  Google Scholar 

  • Larsen, L.B. and Petersen, T.E. (1995) Identification of five molecular forms of cathepsin D in bovine milks, in, Aspartic Proteinases: Structure: Structure, Function, Biology, and Biomedical Implications, (K. Takahashi ed.) Plenum Press, New York, pp. 279–83.

    Google Scholar 

  • Larsen, L.B., Benfeldt, C., Rasmussen, L.K. and Petersen, T.E. (1996) Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation. J. Dairy Res., 63, 119–30.

    CAS  Google Scholar 

  • Larsen, L.B., Wium, H., Benfeldt, C., Heegaard, C.W., Ardö, Y., Qvist, K.B. and Petersen, T.E. (2000) Bovine milk procathepsin D: presence and activity in heated milk and extracts of rennet free UF-Feta. Int. Dairy J., 10, 67–74.

    CAS  Google Scholar 

  • Le Bars, D. and Gripon, J.-C. (1989) Specificity of plasmin towards bovine αs2-casein. J. Dairy Res., 56, 817–21.

    Google Scholar 

  • Le Bars, D. and Gripon, J.C. (1993) Hydrolysis of αs1casein by bovine plasmin. Lait, 73, 337–44.

    Google Scholar 

  • Leigh, J.A. (1993) Activation of bovine plasminogen by Streptococcus uberis. FEMS Microbiol. Lett., 114, 67–72.

    Google Scholar 

  • Leigh, J.A. (1994) Purification of a bovine plasminogen activator from Streptococcus uberis. FEMS Micrbiol. Lett., 118, 153–8.

    CAS  Google Scholar 

  • LeRoux, Y., Collin, O. and Laurent, F. (1995a) Proteolysis in samples of quarter milk with varying somatic cell counts. 1. Comparison of some indicators of endogenous proteolysis in milk. J. Dairy Sci., 78, 1289–97.

    CAS  Google Scholar 

  • LeRoux, Y., Girardet, J.M., Humbert, G., Laurent, F. and Linden, G. (1995b) Proteolysis in samples of quarter milk with varying somatic cell counts. 2. Components PP3 and β-casein-1P (f29-105 and f29-107) of the proteose peptone fraction. J. Dairy Sci., 78, 1298–1305.

    CAS  Google Scholar 

  • Lu, D.D. and Nielsen, S.S. (1993a) Assays for native plasminogen activators in bovine milk. J. Dairy Sci., 76, 3362–8.

    CAS  Google Scholar 

  • Lu, D.D. and Nielsen, S.S. (1993b) Isolation and characterisation of native bovine milk plasminogen activators. J. Dairy Sci., 76, 3369–83.

    CAS  Google Scholar 

  • Lu, D.D. and Nielsen, S.S. (1993c) Heat inactivation of native plasminogen activators in bovine milk. J. Food Sci., 58, 1010–6.

    CAS  Google Scholar 

  • Magboul, A.A.A., Larsen, L.B., McSweeney, P.L.H. and Kelly, A.L. (2001) Cysteine protease activity in bovine milk. Int. Dairy J., 11, 865–72.

    CAS  Google Scholar 

  • Manji, B., Kakuda, Y. and Arnott, D.R. (1986) Effect of storage temperature on age gelation of ultra-high temperature milk processed by direct and indirect heating systems. J. Dairy Sci., 69, 2994–3001.

    Google Scholar 

  • Mara, O., Roupie, C., Duffy, A. and Kelly, A.L. (1998) The curd-forming properties of milk as affected by the action of plasmin. Int. Dairy J., 8, 807–12.

    CAS  Google Scholar 

  • McSweeney, P.L.H., Fox, P.P. and Olson, N.F. (1995) Proteolysis of bovine caseins by cathepsin D: Preliminary observations and comparison with chymosin. Int. Dairy J., 5, 321–36.

    CAS  Google Scholar 

  • McSweeney, P.L.H., Olson, N.F., Fox, P.F., Healy, A. and Højrup, P. (1993) Proteolytic specificity of plasmin on bovine αs1-casein. Food Biotechnol., 7, 143–58.

    CAS  Google Scholar 

  • Melchutti, I., LeRoux, Y., Rainard, P., Poutrel, B. and Laurent, F. (1999) Sequential changes in milk protein composition after experimental Escherichia coli mastitis. Lait, 79, 535–19.

    Google Scholar 

  • Metwalli, A.A.M., de Jongh, H.H.J. and van Boekel, M.A.J.S. (1998) Heat inactivation of bovine plasmin. Int. Dairy J., 8, 47–56.

    CAS  Google Scholar 

  • Mulvihill, D.M. and McCarthy, A. (1993) Relationships between plasmin levels in rennet caseins and proteolytic and rheological changes on storage of cheese analogues made from these caseins. J. Dairy Res., 60, 431–8.

    CAS  Google Scholar 

  • O’Brien, B., Dillon, P., Murphy, J.J., Mehra, R.K., Guinee, T.P., Connolly, J.F., Kelly, A. and Joyce, P. (1999) Effects of stocking density and concentrate supplementation of grazing dairy cows on milk production, composition and processing characteristics. J. Dairy Res., 66, 165–76.

    CAS  Google Scholar 

  • O’Driscoll, B.M., Rattray, F.P., McSweeney, P.L.H. and Kelly, A.L. (1999) Protease activities in raw milk determined using a synthetic heptapeptide substrate. J. Food Sci., 64, 606–11.

    CAS  Google Scholar 

  • Okigbo, L.M., Richardson, G.H., Brown, R.J. and Ernstrom, C.A. (1985) Casein composition of cows milk of different chymosin coagulation properties. J. Dairy Sci., 68, 1887–92.

    CAS  Google Scholar 

  • O’Malley, A.M., Mulvihill, D.M. and Singh, T.K. (2000) Proteolysis in rennet casein-based cheese analogues. Int. Dairy J., 10, 743–54.

    CAS  Google Scholar 

  • Ostensson, K. (1993) Total and differential leucocyte counts, N-acetyl-β-D-glucos-aminidase activity, and serum albumin content in foremilk and residual milk during endotoxin-induced mastitis in cows. Am. J. Vet. Res., 54, 231–8.

    CAS  Google Scholar 

  • Pearse, M.J., Linklater, P.M., Hall, R.J. and MacKinlay, A.G. (1986) Extensive degradation of casein by plasmin does not impede subsequent curd formation and syneresis. J. Dairy Res., 53, 477–80.

    CAS  Google Scholar 

  • Pihlantoleppala, A., Pahkala, E. and Antila, V. (1993) Hydrolysis of K-casein in solution by chymosin, plasmin, trypsin and Lactobacillus proteinases. Agric. Sci. Fin., 2, 489–96.

    CAS  Google Scholar 

  • Politis, I. (1996) Plasminogen activator system: implications for mammary cell growth and involution. J. Dairy Sci., 79, 1097–107.

    CAS  Google Scholar 

  • Politis, I., Lachance, E., Block, E. and Turner, J.D. (1989a) Plasmin and plasminogen in bovine milk: a relationship with involution? J. Dairy Sci., 72, 900–6.

    CAS  Google Scholar 

  • Politis, I., Ng Kwai Hang, K.F. and Giroux, R.N. (1989b) Environmental factors affecting plasmin activity in milk. J. Dairy Sci., 72, 1713–8.

    CAS  Google Scholar 

  • Politis, I., Block, E. and Turner, J.D. (1990) Effect of somatotropin on the plasmin and plasminogen system in the mammary gland: Proposed mechanism of action for somatotropin on the mammary gland. J. Dairy Sci., 73, 1494–9.

    CAS  Google Scholar 

  • Politis, I., Barbano, D.M. and Gorewit, R.C. (1992) Distribution of plasminogen and plasmin in fractions of bovine milk. J. Dairy Sci., 75, 1402–10.

    CAS  Google Scholar 

  • Politis, I., Zavizon, B., Barbano, D.M. and Gorewit, R.C. (1993) Enzymatic assay for the combined determination of plasmin plus plasminogen in milk: revisited. J. Dairy Sci., 76, 1260–7.

    CAS  Google Scholar 

  • Politis, I., White, J.H., Zavizon, B., Goldberg, J.J., Gou, M.R. and Kinstedt, P. (1995) Effect of individual caseins on plasminogen activation by bovine urokinase-type and tissue-type plasminogen activators. J. Dairy Sci., 78, 484–90.

    CAS  Google Scholar 

  • Precetti, A.S., Oria, M.P. and Nielsen, S.S. (1997) Presence in bovine milk of two protease inhibitors of the plasmin system. J. Dairy Sci., 80, 1490–6.

    CAS  Google Scholar 

  • Press, E.M., Porter, R.R. and Cebra, J. (1960) The isolation and properties of a proteolytic enzyme, cathepsin D, from bovine spleen. Biochem. J., 74, 501–14.

    CAS  Google Scholar 

  • Rantamäki, L.K. and Müller, H.-P. (1992) Isolation and characterisation of α2-macroglobulin from mastitis milk. J. Dairy Res., 59, 273–85.

    Google Scholar 

  • Ravn, P., Berglund, L. and Petersen, T.E. (1995) Cloning and characterisation of the bovine plasminogen activators uPA and tPA. Int. Dairy J., 5, 605–17.

    CAS  Google Scholar 

  • Reimerdes, E.H. (1983) New aspects of naturally occurring proteases in bovine milk. J. Dairy Sci., 66, 1591–600.

    CAS  Google Scholar 

  • Reimerdes, E.H. and Herlitz, E. (1979) The formation of γ-caseins during cooling of raw milk. J. Dairy Res., 46, 219–21.

    CAS  Google Scholar 

  • Richardson, B.C. (1982) The effect of storage on the viscosity of some casein solutions. N. Z. J. Dairy Sci. Technol., 17, 277–82.

    CAS  Google Scholar 

  • Richardson, B.C. (1983a) The proteinases of bovine milk and the effect of pasteurisation on their activity. N. Z. J. Dairy Sci. Technol., 18, 233–45.

    CAS  Google Scholar 

  • Richardson, B.C. (1983b) Variation of the concentration of plasmin and plasminogen in bovine milk with lactation. N. Z. J. Dairy Sci. Technol., 18, 247–52.

    CAS  Google Scholar 

  • Richardson, B.C. and Elston, P.D. (1984) Plasmin activity in commercial caseins and caseinates. N. Z. J. Dairy Sci. Technol., 19, 63–7.

    CAS  Google Scholar 

  • Richardson, B.C. and Pearce, K.N. (1981) The determination of plasmin in dairy products. N. Z. J. Dairy Sci. Technol., 16, 209–20.

    CAS  Google Scholar 

  • Rollema, H.S. and Poll, J.K. (1986) The alkaline milk proteinase system: kinetics and mechanism of heat-inactivation. Milchwissenschaft, 41, 536–40.

    CAS  Google Scholar 

  • Saad, A.M. and Ostensson, K. (1990) Flow cytofluorimetric studies on the alteration of leucocyte populations in blood and milk during endotoxin-induced mastitis in cows. Am. J. Vet. Res., 51, 1603–7.

    CAS  Google Scholar 

  • Saeman, A.I., Verdi, R.J., Galton, D.M. and Barbano, D.M. (1988) Effect of mastitis on proteolytic activity in bovine milk. J. Dairy Sci., 71, 505–12.

    CAS  Google Scholar 

  • Saftig, P., Hetman, M., Schmahl, W., Weber, K., Heine, L., Mossmann, H. Koster, A., Hess, B., Evers, M., von Figura, K. and Peters, C. (1995) Mice deficient for the lysosmal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J., 14, 3599–608.

    CAS  Google Scholar 

  • Scarborough, P.E., Guruprasad, K., Topham, C., Richo, G.R., Conner, G.E., Blundell, T.L. and Dunn, B.M. (1993) Exploration of substrate binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Protein Sci., 2, 264–76.

    CAS  Google Scholar 

  • Scharr, J. (1985) Plasmin activity and proteose peptone content of individual milks. J. Dairy Res., 52, 369–78.

    Google Scholar 

  • Scharr, J. and Funke, H. (1986) Effect of subclinical mastitis on milk plasminogen and plasmin compared to that on sodium, antitrypsin and N-acetyl-β-D-glucosaminidase. J. Dairy Res., 53, 515–28.

    Google Scholar 

  • Scherze, I., Sienkiewicz, T. and Krenkel, K. (1994) Studies on proteolytic degradation of caseins. 2. Influence of plasmin on the proteolysis in Gouda cheese. Milchwissenschaft, 49, 564–9.

    CAS  Google Scholar 

  • Scollard, P.G., Beresford, T.P., Murphy, P.M. and Kelly, A.L. (2000) Barostability of milk plasmin activity. Lait, 80, 609–19.

    CAS  Google Scholar 

  • Scollard, P.G., Beresford, T.P., Needs, E.G. Murphy, P.M. and Kelly, A.L. (2000) Plasmin activity, β-lactoglobulin denaturation and proteolysis in high pressure treated milk. Int. Dairy J., 10, 835–41.

    CAS  Google Scholar 

  • Senyk, G.F., Barbano, D.M. and Shipe, W.F. (1985) Proteolysis in milk associated with increased somatic cell counts. J. Dairy Sci., 68, 2189–94.

    CAS  Google Scholar 

  • Singh, T.K. (1995) Proteolysis in Cheddar Cheese During Ripening, PhD Thesis, National University of Ireland, Cork.

    Google Scholar 

  • Skudder, P.J. (1981) Effects of adding potassium iodate to milk before UHT treatment. II. Iodate induced proteolysis during subsequent aspetic storage. J. Dairy Res., 48, 115–22.

    CAS  Google Scholar 

  • Stelwagen, K., Politis, I., White, J.H., Zavizon, B., Prosser, C.G., Davis, S.R. and Farr, V.C. (1994) Effect of milking frequency and somatotropin on the activity of plasminogen activator, plasminogen and plasmin in bovine milk. J. Dairy Sci., 77, 3577–83.

    CAS  Google Scholar 

  • Suzuki, J. and Katoh, N. (1990) Cysteine protease in bovine milk capable of hydrolyzing casein as the substrate and elevation of the activity during the course of mastitis. Jpn. J. Vet. Sci., 52, 947–54.

    CAS  Google Scholar 

  • Travis, J. and Fritz, H. (1991) Potential problems in designing elastase inhibitors for therapy. Am. Rev. Resp. Dis., 143, 1412–5.

    CAS  Google Scholar 

  • Trujillo, A.J., Guamis, B. and Carretero, C. (1998) Hydrolysis of bovine and caprine caseins by rennet and plasmin in model systems. J. Agric. Food Chem., 46, 3066–72.

    CAS  Google Scholar 

  • Vega-Mercado, H., Powers, J.R., Barbosa-Canovas, G.V. and Swanson, B.G. (1995) Plasmin inactivation with pulsed electric fields. J. Food Sci., 60, 1143–6.

    CAS  Google Scholar 

  • Verdi, R.J. and Barbano, R.J. (1991a) Effect of coagulants, somatic cell enzymes and extracellular bacterial enzymes on plasminogen activation. J. Dairy Sci., 74, 772–82.

    CAS  Google Scholar 

  • Verdi, R.J. and Barbano, R.J. (1991b) Properties of proteases from milk somatic cells and blood leucocytes. J. Dairy Sci., 74, 2077–81.

    CAS  Google Scholar 

  • Vetvicka, V., Vetvickova, J., Hilgert, I., Voburka, Z. and Fusek, M. (1997) Analysis of the interaction of procathepsin D activation peptide with breast cancer cells. Int. J. Cancer, 73, 403–9.

    CAS  Google Scholar 

  • Visser, S., Slangen, K.J., Alting, A.C. and Vreeman, H.J. (1989) Specificity of bovine plasmin in its action on bovine αs2-casein. Milchwissenschaft, 44, 335–9.

    CAS  Google Scholar 

  • Visser, F.M.W. (1977a) Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. 1. Description of cheese and aseptic cheesemaking techniques. Neth. Milk Dairy J., 31, 120–33.

    Google Scholar 

  • Visser, F.M.W. (1977b) Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. 3. Protein breakdown: Analysis of the soluble nitrogen and amino nitrogen fractions. Neth. Milk Dairy J., 31, 210–39.

    CAS  Google Scholar 

  • Wallen, P. (1978) Chemistry of plasminogen and plasminogen activation. Prog. Chem. Fibrinol. Thrombol., 3, 167–81.

    CAS  Google Scholar 

  • Weber, B.A. and Nielsen, S.S. (1991) Isolation and partial characterisation of a native serine-type protease inhibitor from bovine milk. J. Dairy Sci., 74, 764–71.

    CAS  Google Scholar 

  • White, J.H., Zavizon, B., O’Hare, K., Gilmore, J., Guo, M.R., Kinstedt, P. and Politis, I. (1995) Distribution of plasminogen activators in different fractions of bovine milk. J. Dairy Res., 62, 115–22.

    CAS  Google Scholar 

  • Wium, H., Kristiansen, K.R. and Qvist, K.B. (1998) Proteolysis and its role in relation to texture of Feta cheese made from ultrafiltered milk with different amounts of rennet. J. Dairy Res., 65, 665–74.

    CAS  Google Scholar 

  • Zachos, T., Politis, I., Gorewit, R.C. and Barbano, D.M. (1992) Effect of mastitis on plasminogen activator activity of milk somatic cells. J. Dairy Res., 49, 461–7.

    Google Scholar 

  • Zarmpoutis, I.V., McSweeney, P.L.H. and Fox, P.F. (1997) Proteolysis in blue-veined cheese: an intervarietal study. Irish J. Agr. Food Res., 36, 219–29.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelly, A.L., McSweeney, P.L.H. (2003). Indigenous Proteinases in Milk. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry—1 Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8602-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47271-8

  • Online ISBN: 978-1-4419-8602-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics