Skip to main content

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 114))

Abstract

In recent years a topic in number theory and algebraic geometry — elliptic curves (more precisely, the theory of elliptic curves defined over finite fields) — has found application in cryptography. The basic reason for this is that elliptic curves over finite fields provide an inexhaustible supply of finite abelian groups which, even when large, are amenable to computation because of their rich structure. Before (§ IV.3) we worked with the multiplicative groups of fields. In many ways elliptic curves are natural analogs of these groups; but they have the advantage that one has more flexibility in choosing an elliptic curve than in choosing a finite field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References for § VI.1

  1. W. Fulton, Algebraic Curves, Benjamin, 1969.

    Google Scholar 

  2. D. Husemoller, Elliptic Curves, Springer-Verlag, 1987.

    Google Scholar 

  3. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-Verlag, 1993.

    Google Scholar 

  4. N. Koblitz, “Why study equations over finite fields?,” Math. Magazine 55 (1982), 144–149.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Lang, Elliptic Curves: Diophantine Analysis, Springer-Verlag, 1978.

    Google Scholar 

  6. J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.

    Google Scholar 

References for § VI.2

  1. G. Agnew, R. Mullin, and S. A. Vanstone, An implementation of elliptic curve cryptosystems over F 2155, IEEE J. Selected Areas in Communications 11 (1993), 804–813.

    Article  Google Scholar 

  2. R. Gupta and M. R. Murty, “Primitive points on elliptic curves,” Compositio Math. 58 (1986), 13–44.

    MathSciNet  MATH  Google Scholar 

  3. N. Koblitz, “Elliptic curve cryptosystems,” Math. comp. 48 (1987).

    Google Scholar 

  4. N. Koblitz, “Primality of the number of points on an elliptic curve over a finite field,” Pacific J. Math. 131 (1988), 157–165.

    MathSciNet  MATH  Google Scholar 

  5. N. Koblitz, Constructing elliptic curve cryptosystems in characteristic 2, Advances in Cryptology — Crypto ′90, Springer-Verlag, 1991, 156–167.

    Google Scholar 

  6. N. Koblitz, Elliptic curve implementation of zero-knowledge blobs, J. Cryptology 4 (1991), 207–213.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Koblitz, CM-curves with good cryptographic properties, Advances in Cryptology — Crypto ′91, Springer-Verlag, 1992, 279–287.

    Google Scholar 

  8. H. W. Lenstra, Jr., “Elliptic curves and number-theoretic algorithms,” Report 86-19, Mathematisch Instituut, Universiteit van Amsterdam, 1986.

    Google Scholar 

  9. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Acad. Publ., 1993.

    Google Scholar 

  10. A. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory IT-39 (1993), 1639–1646.

    Google Scholar 

  11. A. Menezes, S. Vanstone, and R. Zuccherato, Counting points on elliptic curves over F 2m, Math. comp. 60 (1993), 407–420.

    MathSciNet  MATH  Google Scholar 

  12. V. Miller, “Use of elliptic curves in cryptography,” Abstracts for Crypto 85, 1985.

    Google Scholar 

  13. A. M. Odlyzko, “Discrete logarithms in finite fields and their cryptographic significance,” Advances in Cryptology, Proc. Eurocrypt 84, Springer-Verlag, 1985, 224–314.

    MathSciNet  Google Scholar 

  14. R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p,” Math. comp. 44 (1985), 483–494.

    MathSciNet  MATH  Google Scholar 

References for § VI.3

  1. L. Adleman and M. Huang, “Recognizing primes in random polynomial time,” Proc. 19th Annual ACM Symposium on Theory of Computing, 1987, 462–469.

    Google Scholar 

  2. W. Bosma, “Primality testing using elliptic curves,” Report 85-12, Mathematisch Instituut, Universiteit van Amsterdam, 1985.

    Google Scholar 

  3. S. Goldwasser and J. Kilian, “Almost all primes can be quickly certified,” Proc. 18th Annual ACM Symposium on Theory of Computing, 1986, 316–329.

    Google Scholar 

  4. A. K. Lenstra and H. W. Lenstra, Jr., “Algorithms in number theory,” Technical Report 87-008, University of Chicago, 1987.

    Google Scholar 

  5. F. Morain, “Implementation of the Goldwasser-Kilian-Atkin primality testing algorithm,” INRIA report 911, 1988.

    Google Scholar 

  6. H. Pocklington, “The determination of the prime and composite nature of large numbers by Fermat’s theorem,” Proc. Cambridge Philos. Soc, 18 (1914-16), 29–30.

    Google Scholar 

  7. R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p,” Math. comp. 44 (1985), 483–494.

    MathSciNet  MATH  Google Scholar 

References for § VI.4

  1. H. W. Lenstra, Jr., “Factoring integers with elliptic curves,” Annals of Math. (2) 126 (1987), 64–673.

    Article  MathSciNet  Google Scholar 

  2. P. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. comp. 48 (1987), 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. M. Pollard, “Theorems on factorization and primality testing,” Proc. Cambridge Philos. Soc. 76 (1974), 521–528.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koblitz, N. (1994). Elliptic Curves. In: A Course in Number Theory and Cryptography. Graduate Texts in Mathematics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8592-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8592-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6442-2

  • Online ISBN: 978-1-4419-8592-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics