Advertisement

Some Applications and Recent Developments

  • Peter J. Hilton
  • Urs Stammbach
Part of the Graduate Texts in Mathematics book series (GTM, volume 4)

Abstract

The first section of this chapter describes how homological algebra arose by abstraction from algebraic topology and how it has contributed to the knowledge of topology. The other four sections describe applications of the methods and results of homological algebra to other parts of algebra. Most of the material presented in these four sections was not available when this text was first published. Since then homological algebra has indeed found a large number of applications in many different fields, ranging from finite and infinite group theory to representation theory, number theory, algebraic topology, and sheaf theory. Today it is a truly indispensable tool in all these fields. For the purpose of illustrating to the reader the range and depth of these developments, we have selected a number of different topics and describe some of the main applications and results. Naturally, the treatments are somewhat cursory, the intention being to give the flavor of the homological methods rather than the details of the arguments and results.

Keywords

Nilpotent Group Short Exact Sequence Algebraic Topology Homological Algebra Nilpotency Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [D]
    A. Dold: Lectures in Algebraic Topology. New York: Springer-Verlag, 1970.Google Scholar

Literature

  1. [H]
    P. Hilton: Localization and cohomology of nilpotent groups. Math. Z. 132, 263–286 (1973).MathSciNetMATHCrossRefGoogle Scholar
  2. [HR]
    P. Hilton, J. Roitberg: Generalized C-theory and torsion phenomena in nilpotent spaces. Houston J. Math. 2, 525–559 (1976).MathSciNetMATHGoogle Scholar
  3. [S]
    J.-P. Serre: Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. 58, 258–294 (1953).MathSciNetMATHCrossRefGoogle Scholar

Literature (Books)

  1. R. Bieri: Homological Dimension of Discrete Groups. Queen Mary College Mathematics Notes, 1976.0Google Scholar
  2. K. Brown: Cohomology of Groups. Graduate Texts in Mathematics. New York: Springer-Verlag, 1982.Google Scholar
  3. J.-P. Serre: Cohomologie des Groupes Discrètes. Annals of Mathematical Studies, vol. 70. Princeton, NJ: University Press, 1971.Google Scholar

Literature (Papers)

  1. [AS]
    R.C. Alperin, P.B. Shalen: Linear groups of finite cohomological dimension. Invent. Math. 66, 89–98 (1982).MathSciNetMATHCrossRefGoogle Scholar
  2. [B]
    R. Bieri: Gruppen mit Poincaré-Dualität. Comment. Math. Helv. 47, 373–396 (1972).MathSciNetMATHCrossRefGoogle Scholar
  3. [BB]
    M. Bestvina, N. Brady: Morse theory and fmiteness properties of groups. To appear.Google Scholar
  4. [BE]
    R. Bieri, B. Eckmann: Groups with homological duality generalizing Poincaré duality. Invent. Math. 20, 103–124 (1973).MathSciNetMATHCrossRefGoogle Scholar
  5. [BS]
    A. Borel, J.-P. Serre: Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973).MathSciNetMATHCrossRefGoogle Scholar
  6. [BG]
    K. Brown, R. Geoghegan: An infinite-dimensional torsion-free FP group. Invent. Math. 77, 367–381 (1984).MathSciNetMATHCrossRefGoogle Scholar
  7. [E]
    B. Eckmann: Poincaré duality groups of dimension 2 are surface groups. In: Combinatorial Group Theory and Topology, Annals of Math. Studies, Princeton, NJ: University Press, 1986.Google Scholar
  8. [JW]
    F.E.A. Johnson, C.T.C. Wall: On groups satisfying Poincaré duality. Ann. of Math. 96, 592–598 (1972).MathSciNetMATHCrossRefGoogle Scholar
  9. [K]
    P.H. Kropholler: Cohomological fmiteness conditions. In: C.M. Campbell et al.: Groups’ 93, Galway/St Andrews, vol. 1. London Math. Soc. Lecture Note Series. Cambridge: Cambridge University Press, 1995.Google Scholar
  10. [S]
    J.R. Stallings: A finitely presented group whose 3-dimensional integral homology group is not finitely generated. Amer. J. Math. 85, 541–543 (1963).MathSciNetMATHCrossRefGoogle Scholar
  11. [St]
    U. Stammbach: On the weak (homological) dimension of the group algebra of solvable groups. J. London Math. Soc. (2) 2, 567–570 (1970).MathSciNetMATHGoogle Scholar

Literature (Books)

  1. [A]
    J.L. Alperin: Local Representation Theory. Cambridge: Cambridge University Press, 1986.MATHCrossRefGoogle Scholar
  2. [B]
    D. Benson: Representation Theory and Cohomology I, II. Cambridge: Cambridge University Press, 1991.Google Scholar
  3. [C1]
    J. Carlson: Modules and Group Algebras. Basel: Birkhäuser Verlag, 1996.MATHCrossRefGoogle Scholar
  4. [E1]
    L. Evens: The Cohomology of Groups. Oxford, UK: Clarendon Press, 1991.MATHGoogle Scholar

Literature (Papers)

  1. [AE1]
    J.L. Alperin, L. Evens: Representations, resolutions, and Quillen’s dimension theorem. J. Pure Appl. Alg. 22, 1–9 (1981).MathSciNetMATHCrossRefGoogle Scholar
  2. [AE2]
    J.L. Alperin, L. Evens: Varieties and elementary abelian subgroups. J. Pure Appl. Algebra 26, 221–227 (1982).MathSciNetMATHCrossRefGoogle Scholar
  3. [C2]
    J. Carlson: The varieties and the cohomology ring of a module. J. Algebra 85, 104–143 (1983).MathSciNetMATHCrossRefGoogle Scholar
  4. [E2]
    L. Evens: The cohomology ring of a finite group. Trans. Amer. Math. Soc. 101, 224–239 (1961).MathSciNetMATHCrossRefGoogle Scholar
  5. [G]
    J.A. Green: A transfer theorem for modular representations. J. Algebra 1, 73–84 (1964).MathSciNetMATHCrossRefGoogle Scholar
  6. [MSS]
    O. Manz, U. Stammbach, R. Staszewski: On the Loewy series of the group algebra of groups of small p-length. Comm. Algebra 17, 1249–1274 (1989).MathSciNetMATHCrossRefGoogle Scholar
  7. [Q]
    D. Quillen: The spectrum of an equivariant cohomology ring I, II. Ann. of Math. 94, 549–572, 573-602 (1971).MathSciNetMATHCrossRefGoogle Scholar
  8. [S]
    J.-P. Serre: Sur la dimension cohomologique des groupes profinis. Topology 3, 413–420 (1965).MathSciNetMATHCrossRefGoogle Scholar
  9. [St]
    U. Stammbach: On the principal indecomposables of a modular group algebra. J. Pure Appl. Algebra 30, 69–84 (1983).MathSciNetMATHCrossRefGoogle Scholar
  10. [V]
    B.B. Venkov: Cohomology algebras for some classifying spaces (Russian). Dokl. Akad. Nauk SSSR 127, 943–944 (1959).MathSciNetMATHGoogle Scholar

Literature

  1. [B]
    A. Borel et al.: Algebraic D-Modules. New York: Academic Press, 1987.Google Scholar
  2. [CR]
    C.W. Curtis, I. Reiner: Methods of Representation Theory, Vol. 1. New York: Wiley, 1961.Google Scholar
  3. [E]
    B. Eckmann: Homotopie et dualité. Colloque de Topologie Algébrique. Louvain, 1956, pp. 41–53.Google Scholar
  4. [G]
    P.-P. Grivel: Catégories derivées et foncteurs derivés. In: A. Borel et al.: Algebraic D-Modules. New York: Academic Press, 1987.Google Scholar
  5. [GZ]
    P. Gabriel, M. Zisman: Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik. Berlin: Springer-Verlag, 1967.Google Scholar
  6. [H]
    P. Hilton: Homotopy theory of modules and duality. Proceedings of the Mexico Symposium 1958, pp. 273–281.Google Scholar
  7. [Ha]
    R. Hartshorne: Residues and Duality. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1966.Google Scholar
  8. [I]
    G. Iversen: Cohomology of Sheaves. Universitext. New York: Springer-Verlag, 1980 (Chapter 11).Google Scholar
  9. [W]
    C.A. Weibel: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38, 1994 (Chapter 10).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Peter J. Hilton
    • 1
    • 2
  • Urs Stammbach
    • 3
  1. 1.Department of Mathematical SciencesState University of New YorkBinghamtonUSA
  2. 2.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  3. 3.Mathematik ETH-ZentrumZürichSwitzerland

Personalised recommendations