Skip to main content

Abstract

Breast-feeding allows and provides a time of intense maternal-infant interaction that has many advantages. This allows physical, mental, and psychological development of the infant and gives immense satisfaction to the mother for having cared for her progeny. Human milk feeding of infants was routine until the mid-20th century, with greater than 90% of children receiving at least partial breast-feeding1. The benefits of this feeding method were obvious at the time, with some estimates suggesting that during that period, mortality in infants not being breast-fed was greater than 50-fold higher than in those infants receiving human milk. The most common cause of death was respiratory tract infections2. Recently, both Wilson et al3 and Betran et al4 showed that the probability of respiratory illness occurring any time during childhood is significantly reduced if the child is fed exclusively breast milk. However, in this age of antibiotics, life-saving surgery and cancer chemotherapy, an attitude that human health could be improved by adopting “modern” methods became common, which led to the development of many infant formulas that were intended to “modernize” infant feeding. These infant formulas have several drawbacks: no formula has the same composition as breast milk, formula-feeding may be associated with increased exposure to infection and inadequate provision of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grulee EG, Sanford HN, Schwarz H. Breast and artificially fed infants. JAMA 1934; 103: 735–739.

    Article  Google Scholar 

  2. Stevenson SS. The adequacy of artificial feeding in infancy. J Pediatr 1947; 31: 616–630.

    Article  PubMed  CAS  Google Scholar 

  3. Wilson AC, Forsyth JS, Greene SA, Irvine L, Hau C, Howie PW. Relation of infant diet to childhood health: seven year follow up of cohort of children in Dundee infant feeding study. BMJ 1998; 316: 21–25.

    Article  PubMed  CAS  Google Scholar 

  4. Betran AP, de Onis M, Lauer JA, Villar J. Ecological study of effect of breast feeding on infant mortality in Latin America. BMJ 2001; 323: 3-3-306.

    Google Scholar 

  5. American Academy of Pediatrics. Work Group on Breastfeeding. Breastfeeding and the use of human milk (RE9729). Pediatrics 1997; 100: 1035–1039.

    Google Scholar 

  6. Morrow-Tlucak M, Haude RH, Ernhart CB. Breastfeeding and cognitive development in the first 2 years of life. Soc Sci Med 1988; 26: 635–639.

    Article  PubMed  CAS  Google Scholar 

  7. Wang YS, Wu SY. The effect of exclusive breastfeeding on development and incidence of infection in infants. J Hum Lactation 1996; 12-27–30.

    Article  CAS  Google Scholar 

  8. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992, 239. 261–264.

    Article  Google Scholar 

  9. Chua S, Arulkumaran S, Lim I, et al. Influence of breastfeeding and nipple stimulation on postpartum uterine activity. Br J Obstet Gynaecol 1994; 101: 804–805.

    Article  PubMed  CAS  Google Scholar 

  10. Kennedy KI, Visness CM. Contraceptive efficacy of lactational amenorrhoea. Lancet 1992; 339: 227–230.

    Article  PubMed  CAS  Google Scholar 

  11. Gray RH, Campbell OM, Apelo R, et al. Risk of ovulation during lactation. Lancet 1990;335:25–29.

    Article  PubMed  CAS  Google Scholar 

  12. Melton LJ, Bryant SC, Wahner HW, et al. Influence of breastfeeding and other reproductive factors on bone mass later in life. Osteoporosis Int 1993; 3: 76–83.

    Article  Google Scholar 

  13. Cumming RG, Klineberg RJ. Breastfeeding and other reproductive factors and the risk of hip fractures in elderly women. Int J Epidemiol 1993; 22: 684–691.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenblatt KA, Thomas DB. WHO collaborative study of neoplasia and steroid contraceptives. Int J Epidemiol 1993; 22: 192–197.

    Article  PubMed  CAS  Google Scholar 

  15. Newcomb PA, Storer BE, Longnecker MP, et al. Lactation and a reduced risk of premenopausal breast cancer. N Engl J Med 1994; 330: 81–87.

    Article  PubMed  CAS  Google Scholar 

  16. American Academy of Pediatrics, Committee on Drugs. The transfer of drugs and other chemicals into human milk. Pediatrics 1994; 93: 137–150.

    Google Scholar 

  17. Das UN. Essential fatty acids as possible enhancers of the beneficial actions of probiotics. Nutrition, in press.

    Google Scholar 

  18. Welsh JK, May JT. Anti-infective properties of breast milk. J Pediatr 1979; 94: 1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Prentice A, Ewing G, Roberts SB, et al. The nutritional role of breast milk IgA and lactoferrin. Acta Paediatr Scand 1987; 76: 592–598.

    Article  PubMed  CAS  Google Scholar 

  20. Sanchez L, Calvo M, Brock JH. Biological role of lactoferrin. Arch Dis Child 1992; 67:657–661.

    Article  PubMed  CAS  Google Scholar 

  21. Buescher ES, Mcllheran SM. Polymorphonuclear leukocytes and human Colostrums: effects of in vivo and in vitro exposure. J Pediatr Gastroenterol Nutr 1993; 17:424–433

    Article  PubMed  CAS  Google Scholar 

  22. Pickering LK, Cleary TG, Kohl S, Getz S. Polymorphonuclear leukocytes of human Colostrums. I. Oxidative metabolism and kinetics of killing of radiolabeled Staphylococcus aureus. J Infect Dis 1980; 142: 685–693.

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez C, Subiza RC, Mateos P, Casado de Frias E, Moro M, de la Concha EG. Compantive functional study of colostral macrophages from mothers delivering preterm and at term. Acta Paediatr Scand 1989; 78: 337–341.

    Article  PubMed  CAS  Google Scholar 

  24. Speer CP, Gahr M, Pabst MJ. Phagocytosis-associated oxidative metabolism in human milk macrophages. Acta Paediatr Scand 1986; 75: 444–451.

    Article  PubMed  CAS  Google Scholar 

  25. Munoz C, Endres S, van der Meer J, Schlesinger L, Arevalo M, Dinarello C. Interleukin-1 beta in human Colostrums. Res Immunol 1990; 141: 505–513.

    Article  PubMed  CAS  Google Scholar 

  26. Saito S, Maruyama M, Kato Y, Monyama I, Ichijo M. Detection of IL-6 in human milk and its involvement in IgA production. J Reprod Immunol 1991; 20: 267–276.

    Article  PubMed  CAS  Google Scholar 

  27. Rudloff HE, Schmalsteig FC, Palkowetz KH, Paskiewicz EJ, Goldman AS. Interleukin-6 in human milk. J Reprod Immunol 1993; 23: 13–20.

    Article  PubMed  CAS  Google Scholar 

  28. Rudloff HE, Schmalsteig FC, Mushtaha AA, Palkowetz KH, Liu SK, Goldman AS. Tumor necrosis factor-alpha in human milk. Pediatr Res 1992; 31: 29–33.

    Article  PubMed  CAS  Google Scholar 

  29. Wallace JM, Ferguson SJ, Loane P, Kell M, Millar S, Gillmore WS. Cytokines in human breast milk. BrJ Biomed Sci 1997; 54: 85–87.

    CAS  Google Scholar 

  30. Sone S, Tsutsumi H, Takeuchi R, et al. Enhanced cytokine production by milk macrophages following infection with respiratory syncytial virus. J Leukocyte Biol 1997;61:630–636.

    PubMed  CAS  Google Scholar 

  31. Buescher ES, Malinowska I. Soluble receptors and cytokine antagonists in human milk. Pediatr Res 1996; 40: 839–844.

    Article  PubMed  CAS  Google Scholar 

  32. Srivastava MD, Srivastava A, Brouhard B, Saneto R, Groh-Wargo S, Kubit J. Cytokines in human milk. Res Commun Molec Pathol Pharmacol 1996; 93: 263–287.

    CAS  Google Scholar 

  33. Noda K, Umeda M, Ono T. Transforming growth factor activity in human Colostrums. Gann 1984; 75: 109–112.

    PubMed  CAS  Google Scholar 

  34. Saito S, Yoshida M, Ichijo M, Ishizaka S, Tsujii T. Transforming growth factor-beta (TGF-β) in human milk. Clin Exp Immunol 1993; 94: 220–224.

    Article  PubMed  CAS  Google Scholar 

  35. Palkowetz KH, Royer CL, Garofalo R, Rudloff HE, Schmalsteig FC, Goldman AS. The Production of interleukm-6 and interleukin-8 by human mammary epithelial cells. J Reprod Immunol 1994; 26: 57–64.

    Article  PubMed  CAS  Google Scholar 

  36. Garofalo R, Chheda S, Mei F, et al. Interleukin-10 in human milk. Pediatr Res 1995;37:444–449.

    Article  PubMed  CAS  Google Scholar 

  37. Buescher ES, Koeppen PM. Soluble TNFalpha receptors in Colostrums bind to and neutralize TNFα. Pediatr Res 1997; 41: 80a.

    Article  Google Scholar 

  38. Mandalapu P, Padst HF, Paetkau V. A novel immunosuppressive factor in human Colostrums Cell Immunol 1995; 162: 178–184.

    Article  PubMed  CAS  Google Scholar 

  39. Gordon LI, Douglas SD, Kay NE, Yamada O, Osserman EF, Jacob HS. Modulation of neutrophil function by lysozyme. J Clin Invest 1979; 64: 226–232.

    Article  PubMed  CAS  Google Scholar 

  40. Grazioso CF, Werner AL, Alling DW, Bishop PR, Buescher ES. Anti-inflammatory effects of human milk on chemically-induced colitis in rats. Pediatr Res 1997; 42: 639–643.

    Article  PubMed  CAS  Google Scholar 

  41. Murphey DK, Buescher ES. Human Colostrums has anti-inflammatory activity in a rat subcutaneous air pouch model of inflammation. Pediatr Res 1993; 34: 208–212.

    Article  PubMed  CAS  Google Scholar 

  42. Diegelmann RF. Cellular and biochemical aspects of normal and abnormal wound healing: an overview. J Urol 1997; 157: 298–302.

    Article  PubMed  CAS  Google Scholar 

  43. Kumar SG, Das UN, Kumar KV, Tan BKH, Das NP. Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutrition Res 1992; 12: 815–823.

    Article  CAS  Google Scholar 

  44. Kumar GS, Das UN. Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essen Fatty Acids 1994; 50: 331–334.

    Article  CAS  Google Scholar 

  45. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320: 265–271.

    Article  PubMed  CAS  Google Scholar 

  46. Fernandes G, Chandrasekar B, Venkatraman JT, Tomar V, Zhao W. Increased TGFbeta and decreased oncogene expression by w-3 lipids in the spleen delays autoimmune disease in B/W mice J Immunol 1994; 152: 5979–5987.

    PubMed  CAS  Google Scholar 

  47. Das UN. Antibiotic-like action of essential fatty acids. Canadian Med Assoc J 1985; 132:1985.

    Google Scholar 

  48. Lacey RW, Lord VL. Sensitivity of staphylococci to fatty acids: novel inactivation of hnolenic acid by serum. J Med Microbiol 1981; 14: 41–49.

    Article  PubMed  CAS  Google Scholar 

  49. McDonald MI, Graham I, Harvey KJ, et al. Antibacterial activity of hydrolysed linseed oil and hnolenic acid against methicillin-resistant Staphylococcus aureus. Lancet 1981; 11: 1056.

    Article  Google Scholar 

  50. Kankaanpaa PE, Saminen SJ, Isolauri E, Lee YK. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett 2001; 194: 149–153.

    Article  PubMed  CAS  Google Scholar 

  51. Sakamoto I, Igarashi M, Kimura K, Takagi A, Miwa T, Koga Y. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. J Antimicrob Chemother 2001; 47: 709–710.

    Article  PubMed  CAS  Google Scholar 

  52. Forestier C, De Champs C, Vatox C, Joly B. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol 2001; 152: 167–173.

    Article  PubMed  CAS  Google Scholar 

  53. Ogawa M, Shimizu K, Nomoto K, et al. Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli (157:H7) infection in infant rabbits. Infec Immun 2001; 69: 1101–1108.

    Article  CAS  Google Scholar 

  54. Kramer MS. Do breast-feeding and delayed introduction of solid foods protect against subsequent obesity? J Pediatr 1981, 98: 883–887.

    Article  PubMed  CAS  Google Scholar 

  55. Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP. Infant feeding and adult glucose tolerance, blood pressure, and obesity. Arch Dis Child 2000; 82: 248–252.

    Article  PubMed  CAS  Google Scholar 

  56. von Kries R, Koletzko B, Sauerwald T, et al. Breast feeding and obesity: cross sectional study. BMJ 1999; 319: 147–150.

    Article  Google Scholar 

  57. Lucas A, Sarson DL, Blackburn AM, Adrian TE, Aynsley-Green A, Bloom SR. Breast vs bottle: endocrine responses are different with formula feeding. Lancet 1980; 1: 1267–1269.

    Article  PubMed  CAS  Google Scholar 

  58. Lucas A, Boyes S, Bloom SR, Aynsley-Green A. Metabolic and endocrine responses to a milk feed in six-day-old term infants: differences between breast and cow’s milk formula feeding. Acta Paediatr Scand 1981; 70: 195–200.

    Article  PubMed  CAS  Google Scholar 

  59. Hall B. Changing composition of human milk and early development of an appetite control. Lancet 1975; i: 779–780.

    Article  Google Scholar 

  60. Das UN. Is obesity an inflammatory condition? Nutrition 2001; 17: 953–966.

    Article  PubMed  CAS  Google Scholar 

  61. Wallenseen M, Lmdblad BS, Zetterstrom R, Persson B. Acute C-peptide, insulin and branched chain ammo acid response to feeding in formula and breast fed infants. Acta Paediatr Scand 1991; 80: 143–148.

    Article  Google Scholar 

  62. Baur LA, O’Connor J, Pan DA, Kriketos AD, Storlien LH. The fatty acid composition of skeletal muscle membrane phospholipid: its relationship with the type of feeding and plasma glucose levels in young children. Metabolism 1998; 47: 106–112.

    Article  PubMed  CAS  Google Scholar 

  63. Zizek B, Poredos P. Insulin resistance adds to endothelial dysfunction in hypertension and in normotensive offspring of subjects with essential hypertension. J Intern Med 2001; 249: 189–197.

    Article  PubMed  CAS  Google Scholar 

  64. Cleland SJ, Petire JR, Small M, Elliott HL, Connell JM. Insulin action is associated with endothelial function in hypertension and type 2 diabetes. Hypertension 2000; 35 (1Pt 2): 507–511.

    Article  PubMed  CAS  Google Scholar 

  65. Das UN. Is insulin an anti-inflammatory molecule? Nutrition 2001; 17: 409–413.

    Article  PubMed  CAS  Google Scholar 

  66. Das UN. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot Essen Fatty Acids 2000; 63: 351–362.

    Article  CAS  Google Scholar 

  67. Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 2000; 101: 676–681.

    Article  PubMed  CAS  Google Scholar 

  68. Satomi N, Sakurai A, Haranaka K. Relationship of hypoglycemia to tumor necrosis factor production and antitumor activity: role of glucose, insulin and macrophages. J Natl Cancer Inst 1985; 74: 1255–1260.

    PubMed  CAS  Google Scholar 

  69. Das UN. Hypothesis: can glucose-insulm-potassium regimen in combination with polyunsaturated fatty acids suppress lupus and other inflammatory conditions? Prostaglandins Leukot Essen Fatty Acids 2001; 65: 109–113.

    Article  CAS  Google Scholar 

  70. Das UN. Insulin resistance and hyperinsulinemia: Are they secondary to an alteration in the metabolism of essential fatty acids? Med Sci Res 1994; 22: 243–245.

    CAS  Google Scholar 

  71. Das UN, Horrobm DF, Begin ME, et al. Clinical significance of essential fatty acids. Nutrition 1988; 4: 337–341.

    CAS  Google Scholar 

  72. Das UN. Essential fatty acids: biology and their clinical implications. Asian Pacific J Pharmacol 1991; 6: 317–330.

    Google Scholar 

  73. Suresh Y, Das UN. Protective action of arachidonic acid against alloxan-induced cytotoxicity and diabetes mellitus. Prostaglandins Leukot Essen Fatty Acids 2001; 64: 37–52.

    Article  CAS  Google Scholar 

  74. Mohan IK, Das UN. Prevention of chemically induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition 2001; 17: 126–151.

    Article  Google Scholar 

  75. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M. Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 2000; 19: 1784–1793.

    Article  PubMed  CAS  Google Scholar 

  76. Taittonen L, Nuutinen M, Turtinen J, Ukari M. Prenatal and postnatal factors in predicting later blood pressure among children: cardiovascular risk in young Finns. Pediatr Res 1996; 40: 627–632.

    Article  PubMed  CAS  Google Scholar 

  77. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 2001; 357: 413–419.

    Article  PubMed  CAS  Google Scholar 

  78. Lewis DS, Bertrand HA, McMahan CA, McGill HC Jr, carey KD, Masoro EJ. Preweaning food intake influences the adiposity if young adult baboons. J Clin Invest 1986; 78: 899–905.

    Article  PubMed  CAS  Google Scholar 

  79. Lewis DS, Mott GE, McMahan CA, Masoro EJ, Carey KD, McGill HC Jr. Deferred effects of preweaning diet on atherosclerosis in adolescent baboons. Arteriosclerosis 1988; 8: 274–180.

    Article  PubMed  CAS  Google Scholar 

  80. Roberts SB. Prevention of hypertension in adulthood by breastfeeding? Lancet 2001;357:406–407.

    Article  PubMed  CAS  Google Scholar 

  81. Das UN. Minerals, trace elements, and vitamins interact with essential fatty acids and prostaglandins to prevent hypertension, thrombosis, hypercholesterolemia and atherosclerosis and their attendant complications. IRCS Med Sci 1985; 13: 684–687.

    CAS  Google Scholar 

  82. Das UN. Nutritional factors in the pathobiology of human essential hypertension. Nutrition 2001; 17:337–346.

    Article  PubMed  CAS  Google Scholar 

  83. Weisinger HS, Armitage JA, Sinclair AJ, et al. Perinatal omega-3 deficiency affects blood pressure m later in life. Nature Med 2001; 7: 258–259.

    Article  PubMed  CAS  Google Scholar 

  84. Das UN Can perinatal supplementation of long-chain polyunsaturated fatty acids prevent hypertension in adult life? Hypertension 2001; 38: e6–e8.

    Article  PubMed  CAS  Google Scholar 

  85. Schrezenmeir J, Jagla A. Milk and diabetes. J Am Coll Nutr 2000; 19: 176S–190S.

    PubMed  CAS  Google Scholar 

  86. Couper JJ, Steele C, Beresford S, et al. Lack of association between duration of breast-feeding or introduction of cow’s milk and development of islet autoimmunity. Diabetes 1999; 48: 2145–2149.

    Article  PubMed  CAS  Google Scholar 

  87. Pettitt DJ, Knowler WC. Long-term effects of the intrautenne environment, birth weight and breast-feeding in Pima Indians. Diabetes Care 1998; 21 suppl. 2: B138–B141.

    PubMed  Google Scholar 

  88. Pettitt DJ, Forman MR, Hanson RL, Knowler WC, Bennett PH. Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet 1997; 350: 166–168.

    Article  PubMed  CAS  Google Scholar 

  89. Fall CHD, Barker DJP, Osmond C, Winter PD, Clark PMS, Hales CN. Relation of infant feeding to adult serum cholesterol concentration and death from ischemic heart disease. BMJ 1992; 304: 801–805.

    Article  PubMed  CAS  Google Scholar 

  90. Hoffman DJ, Sawaya AL, Verreschi I, Tucker KL, Roberts SB. Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from Sao Paulo, Brazil. Am J Clin Nutr 2000; 72: 702–707.

    PubMed  CAS  Google Scholar 

  91. Kolacek S, Kapetanovic T, Zimolo A, Luzar V. Early determinants of cardiovascular risk factors in adults: A, plasma lipids. Acta Paediatr 1993; 82. 699–704.

    PubMed  CAS  Google Scholar 

  92. Viikan J, Akerblom HK, Rasanen L, Kalavainen M, Pietarinen O. Cardiovascular risk in young Finns. Acta Paediatr Scand 1990; 365 (suppl): 13–19.

    Google Scholar 

  93. Phillipis DI, Barker DJP, Osmond C. Infant feeding, fetal growth and adult thyroid function. Acta Endocrinol Copenh 1993; 129: 134–138.

    Google Scholar 

  94. Mott GE, Jackson EM, DeLallo L, Lewis DS, McMahan CA. Differences in cholesterol metabolism in juvenile baboons are programmed by breast versus formula feeding. J Lipid Res 1995; 36: 299–307.

    PubMed  CAS  Google Scholar 

  95. Wong WW, Hachey DL, Insull W, Opekun AR, Klein PD. Effect of dietary cholesterol on cholesterol synthesis in breast fed and formula fed infants. J Lipid Res 1993; 34.1403–1411.

    PubMed  CAS  Google Scholar 

  96. Mott GE, DeLallo L, Driscoll DM, McMahan CA, Lewis DS. Influence of breast and formula feeding on hepatic concentrations of apolipoprotem and low density lipoprotein receptor mRNAs. Biochem Biophys Acta 1993; 169: 59–65.

    Google Scholar 

  97. Leeson CPM, Kattenhorn M, Deanfield JE, Lucas A. Duration of breast feeding and arterial disntensibility in early adult life: population based study. BMJ 2001; 322: 643–647.

    Article  PubMed  CAS  Google Scholar 

  98. Leeson CPM, Whincup PH, Cook DG, et al. Cholesterol and arterial distensibility in the first decade of life. Circulation 2000; 101: 1533–1538.

    Article  PubMed  CAS  Google Scholar 

  99. Bener A, Denic S, Galadari S. Longer breast-feeding and protection against childhood leukaemia and lymphoms. Eur J Cancer 2001; 37 234–238.

    Article  PubMed  CAS  Google Scholar 

  100. Davis MK. Review of the evidence for an association between infant feeding and childhood cancer. Int J Cancer 1998; 11 (Suppl.): 29–33.

    Article  CAS  Google Scholar 

  101. McKinney PA, Cartwright RA, Saiu JMT, et al. The inter-regional epidemiological study of childhood cancer (IRESCC): a case-control study of aetiological factors in leukaemia and lymphoma. Arch Dis Child 1987; 62: 279–287.

    Article  PubMed  CAS  Google Scholar 

  102. Davis MK, Savitz DA, Graubard BI. Infant feeding and childhood cancer. Lancet 1988; n:365–368.

    Google Scholar 

  103. Schwartzbaum JA, George SL, Pratt CB, Davis B. An exploratory study of environmental and medical factors potentially related to childhood cancer. Med Ped Oncol 1995;24:27–32.

    Google Scholar 

  104. Mathur GP, Gupta N, Mathur S, et al. Breastfeeding and childhood cancer. Indian Pediatrics 1993; 30: 651–657.

    PubMed  CAS  Google Scholar 

  105. Shu XO, Linet MS, Steinbuch M, et al. Breast-feeding and risk of childhood acute lymphoblastic leukaemia. J Natl Clin Oncol 1999; 91: 1765–1772.

    CAS  Google Scholar 

  106. Greaves MF. Aetiology of acute leukaemia. Lancet 1997; 349: 344–349.

    Article  PubMed  CAS  Google Scholar 

  107. Greaves MF. Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 1999; 35: 1941–1953.

    Article  PubMed  CAS  Google Scholar 

  108. Das UN, Devi GR, Rao KP, et al. Prostaglandins and their precursors can modify genetic damage induced by benzo(a)pyrene and gamma-radiation. Prostaglandins 1985;29:911–920.

    Article  PubMed  CAS  Google Scholar 

  109. Das UN, Devi GR, Rao KP, et al. Benzo(a)pyrene and gamma-radiation-induced genetic damage in mice can be prevented by gamma-linolenic acid but not by arachidonic acid. Nutrition Res 1985; 5: 101–106.

    Article  CAS  Google Scholar 

  110. Das UN, Devi GR, Rao KP, et al. Precursors of prostglandins and other n-6 essential fatty acids can modify benzo(a)pyrene-induced chromosomal damage to human lymphocytes in vitro. Nutrition Rep Int 1987; 36: 1267–1272.

    CAS  Google Scholar 

  111. Das UN, Devi GR, Rao KP, et al. Prostaglandins can modify gamma-radiation and chemical-induced cytotoxicity and genetic damage both in vitro and in vivo. Prostaglandins 1989; 38: 689–716.

    Article  PubMed  CAS  Google Scholar 

  112. Das UN. Nutrients, essential fatty acids and prostaglandins interact to augment immune response and prevent genetic damage and cancer. Nutrition 1989; 5: 106–112.

    PubMed  CAS  Google Scholar 

  113. Begin ME, Das UN, Ells G, Horrobin DF. Selective killing of tumor cells by polyunsaturated fatty acids. Prostaglandins Leukot Med 1985; 19. 177–186.

    Article  PubMed  CAS  Google Scholar 

  114. Begin mE, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 1986; 77 1053–1062.

    PubMed  CAS  Google Scholar 

  115. Seigel I, Liu TL, Yaghoubzadeh E, Keskey TS, Gleicher N. Cytotoxic effects of free fatty acids on ascites tumor cells. J Natl Cancer Inst 1987; 78: 271–277.

    Google Scholar 

  116. Begin ME, Das UN, Ells G. Cytotoxic effects of essential fatty acids (EFA) in mixed cultures of normal and malignant human cells. Prog Lipid Res 1986; 25: 573–576.

    Article  CAS  Google Scholar 

  117. Albino AP, Juan G, Traganos F, et al. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid-association with decreased pRb phosphorylation. Cancer Res 2000; 60: 4139–4245.

    PubMed  CAS  Google Scholar 

  118. Cao Y, Pearman AT, Zimmerman GA, Mclntyre TM, Prescott SM. Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 2000; 97: 11280–11285.

    Article  PubMed  CAS  Google Scholar 

  119. Vartak S, McGaw R, Davis CS, Robbms ME, Spector AA. Gamma-linolenic acid (GLA) is cytotoxic to 36B10 malignant astrocytoma cells but not to ‘normal’ rat astrocytes. Br J Cancer 1998; 77: 1612–1629.

    Article  PubMed  CAS  Google Scholar 

  120. Phoon MC, Desbordes C, Howe J, Chow VT. Linoleic and linolelaidic acids differentially influence proliferation and apoptosis of molt-4 leukemia cells. Cell Biol Int 2001; 25: 777–784.

    Article  PubMed  CAS  Google Scholar 

  121. Naidu MRC, Das UN, Kishan A. Intratumoral gamma-linolenic acid therapy of human gliomas Prostaglandins Leukot Essen Fatty Acids 1992; 45: 181–184.

    Article  CAS  Google Scholar 

  122. Das UN, Prasad VSSV, Reddy DR. Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 1995; 94: 147–155.

    Article  PubMed  CAS  Google Scholar 

  123. Singh NK, Das UN, Srivastava PK. Essential fatty acids and cancer with particular reference to Hodgkin’s disease. J Assoc Physicians India 1987; 35: 137–138.

    PubMed  CAS  Google Scholar 

  124. Rigas A, Rigas B, Glassman M, et al. Breast-feeding and maternal smoking in the etiology of Crohn’s disease and ulcerative colitis in childhood. Ann Epidemiol 1993; 3: 387–392.

    Article  PubMed  CAS  Google Scholar 

  125. Koletzko S, Sherman P, Corey M, et al. Role of infant feeding practices in development of Crohn’s disease in childhood. BMJ 1989; 298: 1617–1618.

    Article  PubMed  CAS  Google Scholar 

  126. Thompson NP, Montgomery SM, Wadsworth ME, Pounder RE, Wakefield AJ. Early determinants of inflammatory bowel disease: use of two national longitudinal birth cohorts. Eur J Gastroenterol Hepatol 2000; 12: 25–30.

    Article  PubMed  CAS  Google Scholar 

  127. Corrao G, Tragnone A, Caprilli R, et al. Risk of inflammatory bowel disease attributable to smoking, oral contraception and breastfeeding in Italy: a nationwide case-control study. Cooperative Investigators of the Italian Group for the Study of the Colon and the Rectum (GISC). Int J Epidemiol 1998; 27: 397–404.

    Article  PubMed  CAS  Google Scholar 

  128. Gilat T, Hacohen D, Lilos P, Langman MJ. Childhood factors in ulcerative colitis and Crohn’s disease. An international cooperative study. Scand J Gastroenterol 1987; 22: 1009–1024.

    Article  PubMed  CAS  Google Scholar 

  129. Marrack P, Kappler J, Kotzin BL. Autoimmune disease: why and where it occurs. Nature Med 2001; 7: 899–905.

    Article  PubMed  CAS  Google Scholar 

  130. Jorgensen C, Picot MC, Bologna C, Sany J. Oral contraception, parity, breast feeding, and severity of rheumatoid arthritis. Ann Rheum Dis 1996; 55: 94–98.

    Article  PubMed  CAS  Google Scholar 

  131. Brun JG, Nilssen S, Kvale G. Breast feeding, other reproductive factors and rheumatoid arthritis. A prospective study. Br J Rheumatol 1995; 34: 542–546.

    Article  PubMed  CAS  Google Scholar 

  132. Mason T, Rabinovich CE, Fredrickson DD, et al. Breast feeding and the development of juvenile rheumatoid arthritis. J Rheumatol 1995; 22: 1166–1170.

    PubMed  CAS  Google Scholar 

  133. Lucas A, Morley R, Cole TJ. Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 1998; 317: 1481–1487.

    Article  PubMed  CAS  Google Scholar 

  134. Smart JL. Malnutrition, learning and behavior: 25 years on from the MIT symposium. Proc Nutr Soc 1993; 52: 189–199.

    Article  PubMed  CAS  Google Scholar 

  135. Katz HG. The influence of undernutrition on learning performance in rodents. Nutr Abs Rev 1980; 50: 767–783.

    Google Scholar 

  136. Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 1992; 120: S129–S138.

    Article  PubMed  CAS  Google Scholar 

  137. Carlson SE, Rhodes PG, Ferguson MG. DHA status of preterm infants at birth and following feeding with human milk or formula. Am J Clin Nutr 1985; 44: 798–804.

    Google Scholar 

  138. Clark KJ, Makrides M, Neumann MA, Gibson RA. Determination of the optimal ratio of lmoleic to α-linolenic acid in infant formulas. J Paediatr 1992; 120: SI 51–S158.

    Article  Google Scholar 

  139. Farquharson J, Jamieson EC, Abbasi KA, Patrick WJA, Logan RW., Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child 1995; 72: 198–203.

    Article  PubMed  CAS  Google Scholar 

  140. Willatts P, Forsyth JS, DiMougno MK, Varma S, Colvin M. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 1998; 352: 688–691.

    Article  PubMed  CAS  Google Scholar 

  141. Kyle DJ, Schaefer E, Patton G, Beiser A. Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s disease. Lipids 1999; 34: S245.

    Article  PubMed  CAS  Google Scholar 

  142. Das UN. Estrogen, statins, and polyunsaturated fatty acids: similarities in their actions and benefits-Is there a common link? Nutrition 2002; 18: 178–188.

    Article  PubMed  CAS  Google Scholar 

  143. Yehuda S, Carasso RL. Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified α-linolenic and linoleic acids: determination of the optimal w3-to-w6 ratio. Proc Natl Acad sci USA 1993; 90: 10345–10349.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, U.N. (2002). Breast-feeding. In: A Perinatal Strategy For Preventing Adult Disease: The Role Of Long-Chain Polyunsaturated Fatty Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8564-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8564-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4638-8

  • Online ISBN: 978-1-4419-8564-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics