Skip to main content

Perturbations of Equilibria and Space Homogeneous Solutions

  • Chapter
The Mathematical Theory of Dilute Gases

Part of the book series: Applied Mathematical Sciences ((AMS,volume 106))

  • 1195 Accesses

Abstract

Our first aim in this chapter will be to find a global solution f = f(x, ΞΎ, t) of the Cauchy problem for the Boltzmann equation for hard spheres:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arkeryd, β€œStability in L 1 for the spatially homogeneous Boltzmann equation,” Arch. Rat. Mech. Anal. 103, 151–167 (1988).

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  2. L. Arkeryd, R. Esposito, and M. Pulvirenti, β€œThe Boltzmann equation for weakly inhomogeneous data,” Commun. Math. Phys., 111, 393 (1988).

    ArticleΒ  MathSciNetΒ  ADSΒ  Google ScholarΒ 

  3. A. A. Arsen’ev, β€œThe Cauchy problem for the linearized Boltzmann equation,” USSR Comput. Math, and Math. Phys., 5, 110–136 (1965).

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  4. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz, Almqvist & Wiksells, Uppsala, 1957.

    MATHΒ  Google ScholarΒ 

  5. R. S. Ellis and M. A. Pinsky, β€œThe first and second fluid approximations to the linearized Boltzmann equation,” J. Math. Pures et Appl. 54, 125–156 (1972).

    MathSciNetΒ  Google ScholarΒ 

  6. H. Grad, β€œAsymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,” Proc. Symp. Appl. Math. 17, R. Finn, ed., 154–183, AMS, Providence (1965).

    Google ScholarΒ 

  7. H. Grad, β€œAsymptotic theory of the Boltzmann equation, II” in Rarefied Gas Dynamics, J. A. Laurmann, ed., Vol. I, 26–59 (1963).

    Google ScholarΒ 

  8. T. Kato, Perturbation Theory of Linear Operators, Springer, New York (1966).

    BookΒ  Google ScholarΒ 

  9. N. B. Maslova and A. N. Firsov, β€œSolution of the Cauchy problem for the Boltzmann equation” (in Russian), Vestnik Leningrad Univ. 19, 83–85 (1975).

    MathSciNetΒ  Google ScholarΒ 

  10. J. A. McLennan, β€œConvergence of the Chapman-Enskog expansion for the linearized Boltzmann equation,” Phys. Fluids 8, 1580–1584 (1965).

    ArticleΒ  MathSciNetΒ  ADSΒ  Google ScholarΒ 

  11. T. Nishida and K. Imai, β€œGlobal solutions to the initial value problem for the non-linear Boltzmann equation,” Publ. R.I.M.S. Kyoto Univ. 12, 229–239 (1976).

    Google ScholarΒ 

  12. E. C. Titchmarsh, Introduction to the Theory of Fourier Integral, Oxford University Press (1948).

    Google ScholarΒ 

  13. S. Ukai, β€œLes solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace,” C. R. Acad. Sci., Paris, 282A, 317–320 (1976).

    MathSciNetΒ  Google ScholarΒ 

  14. S. Ukai, β€œOn the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation,” Proc. Japan Acad. 50, 179–184 (1974).

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  15. S. Ukai, β€œSolutions of the Boltzmann equation,” in Patterns and Waves-Qualitative Analysis of Nonlinear Differential Equations, Studies in Mathematics and Its Applications 18, 37–96 (1986).

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  16. S. Ukai and Asano, β€œOn the Cauchy problem of the Boltzmann equation with a soft potential,” Publ. R.I.M.S. Kyoto Univ. 18, 477–519 (1982).

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  17. B. Wennberg, β€œStability and exponential convergence in L p for the spatially homogeneous Boltzmann equation,” submitted to J. Nonlinear Anal. Th. & A.

    Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Β© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cercignani, C., Illner, R., Pulvirenti, M. (1994). Perturbations of Equilibria and Space Homogeneous Solutions. In: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8524-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8524-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6425-5

  • Online ISBN: 978-1-4419-8524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics