Multi-Standard Data Converters



Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) are required in receivers and in transmitters, respectively. The required bandwidth of DAC is determined by communication standards and required resolution is dependent on modulation scheme, like quadrature phase shift keying (QPSK) or quadrature amplitude modulation (QAM), etc. Since current-mode DAC can deal with most of communication standards and modulation schemes, it is readily applied for multi-standard radios. On the other hand, compared to DACs, the situation of ADC is more complicated, because there are more factors that affect the required performance of ADC, such as the unwanted signal, performance of pre-filter, ratio of thermal noise and quantization noise, demodulation method and so on. In this chapter, we will mainly study ADC for multi-standard radios.


Quantization Noise Voltage Control Oscillator Quadrature Amplitude Modulation Signal Bandwidth Timing Jitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Giannini, J. Craninckx, and A. Baschirotto, “Baseband Analog Circuits for Software Defined Radio,” Springer.Google Scholar
  2. 2.
    J. Candy and G. Tems, “Oversampling Delta-Sigma Data Converters: Theory, Design and Simulation,” New York: IEEE Press, 1997.Google Scholar
  3. 3.
    F. Maloberti, “Data Converters,” Springer.Google Scholar
  4. 4.
    J. Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the Art Survey,” IEEE TRAN. on Circuits and Systems-I: Regular papers, vol. 58, no.1, Jan. 2011.Google Scholar
  5. 5.
    M. Hovin, A. Olsen, T. Sverre, and C. Toumanzou,“ΔΣ modulators using frequency-modulated intermediate values,” IEEE. J. Solid-State Circuits, vol. 32, no. 1, pp. 13–22, Jan. 1997.CrossRefGoogle Scholar
  6. 6.
    A. Iwata, N. Sakimura, M. Nagata, and T. Morie, “The architecture of ΔΣ analog-to digital converters using a voltage controlled oscillator as a mulibit quantizer,” IEEE Trans. Circuits System, II, vol. 46, no. 7, pp. 941–945,Jul. 1999.CrossRefGoogle Scholar
  7. 7.
    J. Kim, T. Jang, Y. Yoon, and S. Cho, “Analysis and Design of Voltage-Controlled Oscillator Based Analog-to-Digital Converter,” IEEE TRAN. on Circuits and Systems-I: Regular papers, vol. 57, no.1, Jan. 2010.Google Scholar
  8. 8.
    J. Daniels, W. Dehaene and M. Steyaert, “A 0. 02mm265nm CMOS 30 MHz BW ALL-Digital Differential VCO-based ADC with 64dB SNDR,” IEEE 2010 Symposium on VLSI Circuits, Tech. Dig. of Tech. Papers, pp. 155–156, June 2010.Google Scholar
  9. 9.
    M. Park and M. Perrot, “A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time ΔΣ ADC With VCO-Based Integrator and Quantizer Implemented in 0. 13 μm CMOS,” IEEE. J. Solid-State Circuits, vol. 44, no. 12, pp. 3344–3358, Dec. 2009.CrossRefGoogle Scholar
  10. 10.
    G. Mitteregger, C. Ebner, S. Meching, T. Blon, C. Houigue, and E. Romani, “A \(20 -\mathrm{mW}640 -\mathrm{MHz}\) CMOS Continuous-Time ΣΔ ADC With 20-MHz Signal Bandwidth, 80 − dB Dynamic Range and 12 − bit ENOB,” IEEE. J. Solid-State Circuits, vol. 41, no. 12, pp. 2641–2649, Dec. 2006.CrossRefGoogle Scholar
  11. 11.
    T. Christen, T. Burger, and Q. Huang, “A 0.13umCMOS EDGE/UMTS/WLAN Tri-Mode ΔΣ ADC with -92 dB THD,” IEEE ISSCC Dig. Tech. Papers, pp. 240–241, Feb., 2007.Google Scholar
  12. 12.
    S. Ouzounov, R. Veldhoven, C. Bastiaansen, K. Vongehr, R. Wegberg, G. Geelen, L. Breems, A. Roermund, “A 1.2 V 121-Mode CT ΔΣ Modulator for Wireless Receivers in 90 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 242–243, Feb., 2007.Google Scholar
  13. 13.
    B. Putter, “A 5th-order CT/DT Multi-Mode ΔΣ Modulator,” IEEE ISSCC Dig. Tech. Papers, pp. 244–245, Feb., 2007.Google Scholar
  14. 14.
    P. Malla, H. Lakdawala, K. Kornegay, and K. Soumyanath, “A 28 mW Spectrum-Sensing Reconfigurable \(20\,\mathrm{MHz}\Delta 72\,\mathrm{dB} -\mathrm{SNR}70\,\mathrm{dB} -\mathrm{SNDR}\) DT ΔΣ ADC for 802.11 n/WiMAX Receivers,” IEEE ISSCC Dig. Tech. Papers, pp. 496–497, Feb., 2008.Google Scholar
  15. 15.
    V. Dhanasekaran, M. Gambhir, M. Elsayed, E. Sanches-Sinencio, J. Silva-Martinez, C. Mishra, L. Chen, and E. Pankratz, “A 20 MHz BW 68 dB DR CT ΔΣ ADC Based on a Multi-Bit Time-Domain Quantizer and Feedback Element,” IEEE ISSCC Dig. Tech. Papers, pp. 174–175, Feb., 2009.Google Scholar
  16. 16.
    Y. Ke, P. Gao, J. Craninckx, G. Plas, and G. Gielen, “A 2.8-to-8.5 mW GSM/Bluetooth/ UMTSDVB-H/WLAN Fully Reconfigurable CT ΔΣ with 200 kHz to 20 MHz BW for 4 G radios in 90 nm Digital CMOS,” IEEE 2010 Symposium on VLSI Circuits, Tech. Dig. of Tech. Papers, pp. 153–154, June 2010.Google Scholar
  17. 17.
    T. Christen and Q. Huang, “A 0.13 um CMOS 0.1–20 MHz Bandwidth 86–70 dB DR Multi-Mode DT ΔΣ ADC for IMT-Advanced,” ESSCIRC. Dig. of Tech. Papers, pp. 414–417, Sep. 2010.Google Scholar
  18. 18.
    B. Jonsson, “On CMOS Scaling and A/D-Converter Performance,” 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2010.Google Scholar
  19. 19.
    C. Lin, F. Goes, J. Mulder, Y. Lin, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 b 2.9 GS/s DAC with IM3 <  − 60 dBc Beyond 1 GHz in 65 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 74–75, Feb., 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations