Advertisement

Supramolecular Assemblies Consisting of Naphthalene-Containing Anionic Amphiphiles and one-Dimensional Halogen-Bridged Platinum Complexes

  • Nobuo Kimizuka
  • Yasuhiro Hatanaka
  • Toyoki Kunitake

Abstract

Molecular wires have been attracting much interest due to their indispensable roles in molecular-scale electronic devises, and conventional researches are largely focused on π -conjugated polymeric systems. They suffer from limitations on the type of elements that can be incorporated into the chains. In contrast to the π -conjugated wires, one-dimensional inorganic complexes are composed of a rich variety of metal ions. A family of halogen-bridged one-dimensional MII/MIV mixed valence complexes [M(en)2][M’X2(en)2]Y4 (M, M’ = Pt, Pd, Ni, X = Cl, Br, I, en: 1,2,-diaminoethane, Y: counterions such as ClO4) has been attracting much interest due to their unique physicochemical properties such as intense intervalence charge transfer (CT) absorption, semiconductivity, and large third-order nonlinear optical susceptibilities.2 They are not soluble in organic media and when dispersed in water, the one-dimensional structure is disrupted and dissociate into constituent molecular complexes. We have recently developed a new strategy to solubilize such one-dimensional structures in organic media, by the formation of polyioncomplexes consisting of anionic lipids and the mixed valent complexes.3-5 In this study, we have newly synthesized naphthalene containing sulfonate amphiphiles and solution characteristics of the supramolecular complexes are discussed.

Keywords

Organic Medium Platinum Complex Photoinduced Electron Transfer Supramolecular Complex Supramolecular Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For example, G. Padmanaban and S. Ramakrishnan, J. Am. Chem. Soc. 122, 2244 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Okamoto and M. Yamashita, Bull. Chem. Soc. Jpn. 71, 2023 (1998) and references therein.CrossRefGoogle Scholar
  3. 4.
    N. Kimizuka, N. Oda, and T. Kunitake. Chem. Lett. 1998, 695.Google Scholar
  4. 5.
    N. Kimizuka, N. Oda, and T. Kunitake. Inorg. Chem. 39, 2684 (2000).CrossRefGoogle Scholar
  5. 6.
    N. Kimizuka. S. H. Lee, and T. Kunitake. Angew. Chem. Int. Ed. Engl. 39, 389 (2000).CrossRefGoogle Scholar
  6. 7.
    (a)N. Nakashima, N. Kimizuka, and T. Kunitake, Chem. Lett. 1817 (1985). (b) N. Kimizuka, T. Kunitake, J. Am. Chem.Soc. 111, 3758 (1989).Google Scholar
  7. 8.
    (a)T. Kunitake, M. Shimomura, Y. Hashiguchi, and T. Kawanaka, J. Chem. Soc., Chem. Commun, 833 (1985). (b) H. Nakamura, H. Fujii, H. Sakaguchi, T. Matsuo, N. Nakashima, K. Yoshihara, T. Ikeda, and S. Tazuke, J. Phys. Chem. 92, 6151 (1989).Google Scholar
  8. 9.
    (a)N. Kimizuka, T. Kawasaki, K. Hirata, and T. Kunitake, J. Am. Chem. Soc. 120, 4094 (1998) and references therein, (b) N. Kimizuka, T. Kawasaki, K. Hirata, and T. Kunitake, J. Am. Chem. Soc. 117, 6360 (1995).CrossRefGoogle Scholar
  9. 10.
    N. Kimizuka, T. Takasaki, and T. Kunitake. Chem. Lett. 1911 (1988).Google Scholar
  10. 11.
    N. Kimizuka, M. Shimizu, S. Fujikawa, K. Fujimura, M. Sano, and T. Kunitake, Chem. Lett. 967 (1998).Google Scholar
  11. 12.
    N. Matsushita and A. Taira, Synthetic Metals, 102, 1787 (1999).CrossRefGoogle Scholar
  12. 13.
    N. Kimizuka, Adv. Mater. 12, 1461 (2000).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2003

Authors and Affiliations

  • Nobuo Kimizuka
    • 1
  • Yasuhiro Hatanaka
    • 1
  • Toyoki Kunitake
    • 2
  1. 1.Department of Applied Chemistry, Faculty of EngineeringKyushu UniversityFukuokaJapan
  2. 2.Frontier Research System, RIKENWako, SaitamaJapan

Personalised recommendations