Advertisement

Macromolecular and Supramolecular Architectures Based on Fullerenes

  • Shashadhar Samal
  • Kurt E. Geckeler

Abstract

The fullerenes with the π-electron orbitals extending outward provide an excellent opportunity for a variety of orbital-orbital interactions with molecules appropriately positioned close to their surface. The extent of these interactions is dependent on the π- electron availability, shape, and dimension of the interacting molecules. The typical arrangement of the five- and the six-membered rings in C60 lead to a spherical shape. When five-membered ring is attached to six-membered rings on each side, each carrying three alternate π-bonds in such away that none of the π-bonds are in the 5,6-ring junctions, and the structure is energy-minimized, the result is a curved surface (Figure 1a). On the curved exterior of such a surface, the π-bonds are bent (Figure 1b).

Keywords

Lower Unoccupied Molecular Orbital Crown Ether Fullerene Derivative Carbon Sphere Fullerene Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Echegoyen, F. Diederich, and L. E. Echegoyen, in Fullerenes: Chemistry, Physics and Technology, Eds. K. M. Kadish and R. S. Ruoff, Wiley-Interscience, New York, 1–52 (2000).Google Scholar
  2. 2.
    K. E. Geckeler, Trends Polym. Sci. 2, 355 (1994).Google Scholar
  3. 3.
    S. Samal and K. E. Geckeler, in Advanced Functional Molecules and Polymers, Ed. H. S. Nalwa, Gordon and Breach Publishing, Vol. 1, Chapter 1, 1–85 (2001).Google Scholar
  4. 4.
    J. W. Steed, P. C. Junk, J. L. Atwood, M. J. Barnes, C. L. Raston, and R. S. Bulkhalter, J. Am. Chem. Soc. 116, 10346 (1994).CrossRefGoogle Scholar
  5. 5.
    S. Wang, R. M. Leblan, F. Arias, and I. Echegoyen, Langmuir 13, 1672 (1997).CrossRefGoogle Scholar
  6. 6.
    C. J. Pedersen and H. K. Freosdorff, Angew. Chem., Int. Ed. Engl. 11, 16 (1972).CrossRefGoogle Scholar
  7. 7.
    F. Arias, L. A. Godinez, S. R. Wilson, A. E. Kaifer, and L. Echegoyen, J. Am. Chem. Soc. 118, 6086 (1996).CrossRefGoogle Scholar
  8. 8.
    S. R. Wilson and Q. Lu, Tetrahedron Lett. 34, 8043 (1993).CrossRefGoogle Scholar
  9. 9.
    F. Diederich and R. Kessinger, Acc. Chem. Res. 32, 537 (1999).CrossRefGoogle Scholar
  10. 10.
    U. Jonas, F. Cardullo, P. Belik, F. Diederich, A. Gügel, E. Hart, A. Hermann, L. Isaacs, K. Müllen, H. Ringsdorf, C. Thilgen, P. Uhlmann, A. Vasella, C. A. A. Waldraff, and M. Walter, Chem. Eur. J. 1, 243 (1995).CrossRefGoogle Scholar
  11. 11.
    F. Cardullo, F. Diederich, L. Echegoyen, T. Habicher, N. Jayaraman, R. M. Leblane, J. F. Stoddart, and S. Wang, Langmuir 14, 1995 (1998).CrossRefGoogle Scholar
  12. 12.
    F. Diederich, J. Effing, U. Jonas, L. Jullien, T. Plesnivy, H. Ringsdorf, C. Thilgen, and D. Weinstein, Angew. Chem., Int. Ed. Engl. 31, 1599 (1992).CrossRefGoogle Scholar
  13. 13.
    J. L. Atwood, G. A. Koutsantonis, and C. L. Raston, Nature 368, 229 (1994).CrossRefGoogle Scholar
  14. 14.
    T. Suzuki, K. Nakashima, and S. Shinkai, Chem. Lett. 699 (1994).Google Scholar
  15. 15.
    E. C. Constable, Angew. Chem., Int. Ed. Engl. 33, 3269 (1994).CrossRefGoogle Scholar
  16. 16.
    S. Shinkai and A. Ikeda, Gazz. Chim. Ital. 127, 657 (1997).Google Scholar
  17. 17.
    R. M. Williams and J. W. Verhoeven, Recl. Trav, Chim. Pays-Bas 111, 531 (1992).CrossRefGoogle Scholar
  18. 18.
    R. M. Williams, J. M. Zwier, J. W. Verhoeven, G. H. Nachtegaal, and A. P. M. Kentgens, J. Am. Chem. Soc. 116, 6965 (1994)CrossRefGoogle Scholar
  19. 19.
    J. L. Atwood, L. J. Barbour, C. L. Raston, and I. B. N. Sudria, Angew. Chem., Int. Ed. Engl. 37, 981 (1998).CrossRefGoogle Scholar
  20. 20.
    C. L. Raston, J. L. Atwood, B. J. Nichols, and I. B. N. Sudria, Chem. Commun. 2615 (1996).Google Scholar
  21. 21.
    K. Araki, K. Akao, A. Ikeda, T. Suzuki, and S. Shinkai, Tetrahedron Lett. 37, 73 (1996).CrossRefGoogle Scholar
  22. 22.
    A. Ikeda, M. Yoshimura, and S. Shinkai, Tetrahedron Lett. 38, 2107 (1997).CrossRefGoogle Scholar
  23. 23.
    A. Ikeda, Y. Suzuki, M. Yoshimura, and S. Shinkai, Tetrahedron 54, 2497 (1998).CrossRefGoogle Scholar
  24. 24.
    T. Haino, M. Yanase, and Y. Fukazawa, Angew. Chem,. Int. Ed. Engl. 36, 259 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Shinkai, H. Adams, and J. M. Stirling, J. Chem, Soc., Chem. Commn. 2527 (1994).Google Scholar
  26. 26.
    A. Ikeda and S. Shinkai, Chem. Lett. 803 (1996).Google Scholar
  27. 27.
    M. Kawaguchi, A. Ikeda, and S. Shinkai, J. Chem. Soc., Perkin Trans. I, 179 (1998).Google Scholar
  28. 28.
    M. Prato, Mater. Chem. 7, 1097 (1997).CrossRefGoogle Scholar
  29. 29.
    H. Imahori and Y. Sakata, Adv. Mater. 9, 537 (1997).CrossRefGoogle Scholar
  30. 30.
    N. Martin, J. Segura, and C. Seoane, Mater. Chem. 7, 1661 (1997).CrossRefGoogle Scholar
  31. 31.
    P. A. Liddell, J. P. Sumida, A. N. Macpherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore, and D. Gust, Photochem. Photobiol. 60, 537 (1994).CrossRefGoogle Scholar
  32. 32.
    H. Imahori, T. Hagiwara, T. Akiyama, S. Taniguchi, T. Okada, and Y. Sakata, Chem. Lett. 265 (1995).Google Scholar
  33. 33.
    M. G. Ranasinghe, A. M. Oliver, D. F. Ruthenfluh, A. Salek, and M. N. Paden-Row, Tetrahedron Lett. 37, 4797 (1996).CrossRefGoogle Scholar
  34. 34.
    T. Bell, T. Smith, K. Shiggino, M. Ranasinghe, M. Shephard, and M. Paddon-Row, Chem. Phys. Lett. 268, 223 (1997).CrossRefGoogle Scholar
  35. 35.
    D. Kuciauskas, S. Lin, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, T. Drovetskaya, C. A. Reed, and P. D. W. Boyd, J. Phys. Chem. 100, 15926 (1996) (Check page, it is given as 15, 926 in the review of Prato).CrossRefGoogle Scholar
  36. 36.
    H. Imahori, S. Cardoso, D. Tatman, S. Lin, L. Noss, G. Seely, L. Sereno, J. Chessa de Silber, T. A. Moore, A. L. Moore, and D. Gust, Photochem. Photobiol. 62, 1009 (1995).CrossRefGoogle Scholar
  37. 37.
    T. Drovetskaya, C. A. Reed, and P. Boyd, Tetrahedron Lett. 36, 7971 (1995).CrossRefGoogle Scholar
  38. 38.
    H. Imahori and Y. Sakata, Chem. Lett. 3, 199 (1996).CrossRefGoogle Scholar
  39. 39.
    Y. Sun, T. Drovetskaya, R. D. Bolskar, R. Bau, P. D. W. Boyd, and C. A. Reed, J. Org. Chem. 62, 3642 (1997).CrossRefGoogle Scholar
  40. 40.
    N. Martin, L. Sanchez, B. Illescâs, and I. Pérez, Chem. Rev. 98, 2527 (1998).CrossRefGoogle Scholar
  41. 41.
    P. A. Liddel, J. P. Sumida, A. N. MacPherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore, and D. Gust, Photochem. Photobiol. 60, 537 (1994).CrossRefGoogle Scholar
  42. 42.
    H. Imahori, K. Hagiwara, T. Akiyama, S. Taniguchi, T. Okada, and Y. Sakata, Chem. Lett. 265 (1995).Google Scholar
  43. 43.
    H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa, and Y. Sakata, J. Am. Chem. Soc. 118, 11771 (1996).CrossRefGoogle Scholar
  44. 44.
    R. M. Williams, M. Koeberg, J. M. Lawson, Y.-Z. An, Y. Rubin, M. N. Paddon-Row, and J. W. Verhoeven J. Org. Chem. 61, 5055 (1996).CrossRefGoogle Scholar
  45. 45.
    P. A. Liddell, D. Kuciauskas, J. P. Sumida, B. Nash, D. Nguyen, A. L. Moore, T. A. Moore, and D. Gust, J. Am. Chem. Soc. 119, 1400 (1997).CrossRefGoogle Scholar
  46. 46.
    N. Armaroli, F. Diederich, C. O. Dietrich-Buchecker, L. Flamigni, G. Marconi, and J. F. Nierengarten, New J. Chem. 77 (1999).Google Scholar
  47. 47.
    F. Diederich, and R. Kissinger, Acc. Chem. Res. 32, 537 (1999).CrossRefGoogle Scholar
  48. 48.
    T. G. Linssen, K. Durr, M. Hanack, and A. Hirsch, J. Chem. Soc, Chem. Commn, 103 (1995).Google Scholar
  49. 49.
    P. R. Ashton, F. Diederich, M. Gomez-Lopez, J.F. Nierengarten, J. A. Preece, F. M. Raymo, and J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 36, 1448 (1997).CrossRefGoogle Scholar
  50. 50.
    F. Diederich, C. Dietrich-Buchecker, J.-F. Nierengarten, and J.-P. Sauvage, J. Chem. Soc., Chem. Commun. 781 (1995).Google Scholar
  51. 51.
    K-Y. Kay and I. C. Oh, Tetrahedron Lett. 40, 1709 (1999).CrossRefGoogle Scholar
  52. 52.
    Z. Yoshida, H. Takekuma, S-I. Takekuma, and Y. Matsubara, Angew. Chem., Int. Ed. Engl. 33, 1597. (1994).CrossRefGoogle Scholar
  53. 53.
    T. Anderson, K. Nilson, M. Sundhal, G. Westman, and O. Wennerström, J. Chem. Soc., Chem. Commun. 604 (1992).Google Scholar
  54. 54.
    C. N. Murthy and K. E. Geckeler, Chem. Commun. 1194 (2001).Google Scholar
  55. 55.
    V. Ohlendorf, A. Willnow, H. Hungerbuhler, D. M. Guldi, and K.-D. Asmus, J. Chem. Soc. Chem. Commun. 759 (1995).Google Scholar
  56. 56.
    K. I. Priyadarsini, H. Mohan, and J. P. Mittal, J. Photochem. Photobiol. A, 63 (1995).Google Scholar
  57. 57.
    A. Ikeda, T. Hatano, M. Kawaguchi, M. Suenaga, and H. Shinkai, S. J. Chem. Soc., Chem. Commun. 15, 1403 (1999).CrossRefGoogle Scholar
  58. 58.
    J. P Kamat, T. P. A Devasagayam, K. I Priyadarsini, H Mohan, and J. P. Mittal, Chem.-Biol. Interact. 114, 145 (1998).CrossRefGoogle Scholar
  59. 59.
    S. Samal and K. E. Geckeler, Chem. Commun. 1101 (2000).Google Scholar
  60. 60.
    K. E. Geckeler and A. Hirsch, J. Am. Chem. Soc. 115, 3850 (1993).CrossRefGoogle Scholar
  61. 61.
    K. E. Geckeler and S. Samal, Fullerene Sci. Technol. 9, 17 (2001).CrossRefGoogle Scholar
  62. 62.
    S. Samal, B-J. Choi, and K. E. Geckeler, Chem. Commun. 1373 (2000).Google Scholar
  63. 63.
    S. Samal and K. E. Geckeler, Macromol. Biosci. 1, 329 (2001).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2003

Authors and Affiliations

  • Shashadhar Samal
    • 1
  • Kurt E. Geckeler
    • 1
  1. 1.Laboratory of Applied Macromolecular Chemistry, Department of Materials Science and EngineeringKwangju Institute of Science and TechnologyKwangjuSouth Korea

Personalised recommendations