Regularization Theory for Equations of the First Kind

Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 120)

Abstract

We saw in the previous chapter that many inverse problems can be formulated as operator equations of the form
$$Kx = y,$$
where K is a linear compact operator between Hilbert spaces X and Y over the field \(\mathbb{K} = \mathbb{R}\) or \(\mathbb{C}\). We also saw that a successful reconstruction strategy requires additional a priori information about the solution.

References

  1. 3.
    R.S. Anderssen and P. Bloomfield. Numerical differentiation procedures for non-exact data. Numer. Math., 22:157–182, 1973.MathSciNetCrossRefGoogle Scholar
  2. 17.
    J. Baumeister. Stable Solutions of Inverse Problems. Vieweg, Braunschweig, 1987.CrossRefGoogle Scholar
  3. 18.
    H. Bialy. Iterative Behandlung linearer Funktionalgleichungen. Arch. Rat. Mech. Anal., 4:166, 1959.MathSciNetMATHCrossRefGoogle Scholar
  4. 20.
    H. Brakhage. On ill-posed problems and the method of conjugate gradients. In H.W. Engl and C.W. Groetsch, editors, Inverse and Ill-Posed Problems. Academic Press, New York, 1987.Google Scholar
  5. 24.
    H. Brunner. Discretization of Volterra integral equations of the first kind (II). Numer. Math., 30:117–136, 1978.MathSciNetMATHCrossRefGoogle Scholar
  6. 25.
    H. Brunner. A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comp. Appl. Math., 8:213–229, 1982.MathSciNetMATHCrossRefGoogle Scholar
  7. 26.
    L. Brynielson. On Fredholm integral equations of the first kind with convex constraints. SIAM J. Math. Anal., 5:955–962, 1974.MathSciNetCrossRefGoogle Scholar
  8. 29.
    J.P. Butler, J.A. Reeds, and S.V. Dawson. Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J. Numer. Anal., 18:381–397, 1981.MathSciNetMATHCrossRefGoogle Scholar
  9. 41.
    K. Chandrasekharan. Classical Fourier Transforms. Springer, New York, 1989.MATHCrossRefGoogle Scholar
  10. 60.
    J. Cullum. Numerical differentiation and regularization. SIAM J. Numer. Anal., 8:254–265, 1971.MathSciNetMATHCrossRefGoogle Scholar
  11. 61.
    J. Cullum. The effective choice of the smoothing norm in regularization. Math. Comput., 33:149–170, 1979.MathSciNetMATHCrossRefGoogle Scholar
  12. 62.
    J.W. Daniel. The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal., 4:10–26, 1967.MathSciNetMATHCrossRefGoogle Scholar
  13. 65.
    T.F. Dolgopolova and V.K. Ivanov. Numerical differentiation. Comput. Math. Math. Phys., 6:570–576, 1966.MathSciNetCrossRefGoogle Scholar
  14. 66.
    P.P.B. Eggermont. Approximation properties of quadrature methods for Volterra equations of the first kind. Math. Comput., 43:455–471, 1984.MathSciNetMATHCrossRefGoogle Scholar
  15. 67.
    P.P.B. Eggermont. Beyond superconvergence of collocation methods for Volterra equations of the first kind. In G. Hämmerlin and K.H. Hoffmann, editors, Constructive Methods for the Practical Treatment of Integral Equations, pages 110–119, Boston, 1985. Birkhäuser.CrossRefGoogle Scholar
  16. 68.
    B. Eicke, A.K. Louis, and R. Plato. The instability of some gradient methods for ill-posed problems. Numer. Math., 58:129–134, 1990.MathSciNetMATHCrossRefGoogle Scholar
  17. 74.
    H. Engl. Necessary and sufficient conditions for convergence of regularization methods for solving linear operator equations of the first kind. Numer. Funct. Anal. Optim., 3:201–222, 1981.MathSciNetMATHCrossRefGoogle Scholar
  18. 76.
    H. Engl. Discrepancy principles for Tikhonov regularization of illposed problems leading to optimal convergence rates. J. Optim. Theory Appl., 52:209–215, 1987.MathSciNetMATHCrossRefGoogle Scholar
  19. 77.
    H. Engl. On the choice of the regularization parameter for iterated Tikhonov-regularization of ill-posed problems. J. Approx. Theory, 49:55–63, 1987.MathSciNetMATHCrossRefGoogle Scholar
  20. 78.
    H. Engl. Regularization methods for the stable solution of inverse problems. Surv. Math. Ind., 3:71–143, 1993.MathSciNetMATHGoogle Scholar
  21. 79.
    H. Engl and H. Gfrerer. A posteriori parameter choice for general regularization methods for solving linear ill-posed problems. Appl. Numer. Math., 4:395–417, 1988.MathSciNetMATHCrossRefGoogle Scholar
  22. 80.
    H. Engl and W. Grever. Using the L-curve for determining optimal regularization parameters. Numer. Math., 69:25–31, 1994.MathSciNetMATHCrossRefGoogle Scholar
  23. 83.
    H. Engl and A. Neubauer. Optimal discrepancy principles for the Tikhonov regularization of integral equations of the first kind. In G. Hämmerlin and K.H. Hoffmann, editors, Constructive Methods for the Practical Treatment of Integral Equations, volume ISNM 73, pages 120–141, Basel, 1985. Birkhäuser Verlag.CrossRefGoogle Scholar
  24. 86.
    J.N. Franklin. On Tikhonov’s method for ill-posed problems. Math. Comput., 28:889–907, 1974.MathSciNetMATHGoogle Scholar
  25. 87.
    V. Fridman. A method of successive approximations for Fredholm integral equations of the first kind. Uspeki Mat. Nauk., 11:233–234, 1956. in Russian.MathSciNetMATHGoogle Scholar
  26. 90.
    H. Gfrerer. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comput., 49:507–522, 1987.MathSciNetMATHCrossRefGoogle Scholar
  27. 92.
    S.F. Gilyazov. Regularizing algorithms based on the conjugate gradient method. USSR Comput. Math. Math. Phys., 26:9–13, 1986.MathSciNetCrossRefGoogle Scholar
  28. 94.
    G.H. Golub and D.P. O’Leary. Some history of the conjugate gradient method and Lanczos algorithms: 1948–1976. SIAM Review, 31:50–102, 1989.MathSciNetMATHCrossRefGoogle Scholar
  29. 97.
    J. Graves and P.M. Prenter. Numerical iterative filters applied to first kind Fredholm integral equations. Numer. Math., 30:281–299, 1978.MathSciNetMATHCrossRefGoogle Scholar
  30. 98.
    C.W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, 1984.MATHGoogle Scholar
  31. 99.
    C.W. Groetsch. Inverse Problems in the Mathematical Sciences. Vieweg, Braunschweig Wiesbaden, 1993.MATHGoogle Scholar
  32. 106.
    M. Hanke. Accelerated Landweber iterations for the solution of ill-posed equations. Numer. Math., 60:341–373, 1991.MathSciNetMATHCrossRefGoogle Scholar
  33. 107.
    M. Hanke. Regularization with differential operators. An iterative approach. Numer. Funct. Anal. Optim., 13:523–540, 1992.MathSciNetMATHCrossRefGoogle Scholar
  34. 108.
    M. Hanke. An ε-free a posteriori stopping rule for certain iterative regularization methods. SIAM J. Numer. Anal., 30:1208–1228, 1993.MathSciNetMATHCrossRefGoogle Scholar
  35. 109.
    M. Hanke. Regularisierung schlecht gestellter Gleichungen. Technical report, University of Karlsruhe, Karlsruhe, 1993.Google Scholar
  36. 110.
    M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman Research Notes in Mathematics. Pitman, 1995.MATHGoogle Scholar
  37. 112.
    M. Hanke and H. Engl. An optimal stopping rule for the ν-method for solving ill-posed problems using Christoffel functions. J. Approx. Theor., 79:89–108, 1994.MathSciNetMATHCrossRefGoogle Scholar
  38. 113.
    M. Hanke and C. Hansen. Regularization methods for large-scale problems. Surv. Math. Ind., 3:253–315, 1993.MathSciNetMATHGoogle Scholar
  39. 114.
    C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34:561–580, 1992.MathSciNetMATHCrossRefGoogle Scholar
  40. 119.
    M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.MathSciNetMATHCrossRefGoogle Scholar
  41. 120.
    J.W. Hilgers. On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems. SIAM J. Numer. Anal., 13:172–184, 1976.MathSciNetMATHCrossRefGoogle Scholar
  42. 137.
    J.T. King and D. Chillingworth. Approximation of generalized inverses by iterated regularization. Numer. Funct. Anal. Optim., 1:499–513, 1979.MathSciNetMATHCrossRefGoogle Scholar
  43. 147.
    I. Knowles and R. Wallace. A variational method for numerical differentiation. Numer. Math., 70:91–110, 1995.MathSciNetMATHCrossRefGoogle Scholar
  44. 155.
    L. Landweber. An iteration formula for Fredholm integral equations of the first kind. Am. J. Math., 73:615–624, 1951.MathSciNetMATHCrossRefGoogle Scholar
  45. 161.
    P. Linz. Numerical methods for Volterra equations of the first kind. Comput. J., 12:393–397, 1969.MathSciNetMATHCrossRefGoogle Scholar
  46. 163.
    J. Locker and P.M. Prenter. Regularization with differential operators. I: General theory. J. Math. Anal. Appl., 74:504–529, 1980.MathSciNetMATHCrossRefGoogle Scholar
  47. 164.
    A.K. Louis. Convergence of the conjugate gradient method for compact operators. In H.W. Engl and C.W. Groetsch, editors, Inverse and Ill-posed Problems, pages 177–183, Boston, 1987. Academic Press.Google Scholar
  48. 165.
    A.K. Louis. Inverse und schlecht gestellte Probleme. Teubner–Verlag, Stuttgart, 1989.MATHCrossRefGoogle Scholar
  49. 176.
    V.A. Morozov. Choice of parameter for the solution of functional equations by the regularization method. Sov. Math. Doklady, 8:1000–1003, 1967.MATHGoogle Scholar
  50. 177.
    V.A. Morozov. The error principle in the solution of operational equations by the regularization method. USSR Comput. Math. Math. Phys., 8:63–87, 1968.CrossRefGoogle Scholar
  51. 178.
    V.A. Morozov. Methods for Solving Incorrectly Posed Problems. Springer, New York, 1984.CrossRefGoogle Scholar
  52. 180.
    D.A. Murio. The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York, 1993.CrossRefGoogle Scholar
  53. 187.
    F. Natterer. Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal., 18:29–37, 1984.MathSciNetMATHCrossRefGoogle Scholar
  54. 189.
    A.S. Nemirov’ski and B.T. Polyak. Iterative methods for solving linear ill-posed problems and precise information I. Eng. Cybern., 22:1–11, 1984.Google Scholar
  55. 190.
    A.S. Nemirov’ski and B.T. Polyak. Iterative methods for solving linear ill-posed problems and precise information II. Eng. Cybern., 22:50–56, 1984.Google Scholar
  56. 191.
    A. Neubauer. An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates. SIAM J. Numer. Anal., 25:1313–1326, 1988.MathSciNetMATHCrossRefGoogle Scholar
  57. 192.
    Y. Notay. On the convergence rate of the conjugate gradients in the presence of rounding errors. Numer. Math., 65:301–318, 1993.MathSciNetMATHCrossRefGoogle Scholar
  58. 199.
    D.L. Phillips. A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach., 9:84–97, 1962.MathSciNetMATHCrossRefGoogle Scholar
  59. 214.
    P.C. Sabatier. Positivity constraints in linear inverse problem - I. General theory. Geophys. J.R. Astron. Soc., 48:415–441, 1977.MATHCrossRefGoogle Scholar
  60. 215.
    P.C. Sabatier. Positivity constraints in linear inverse problem - II. Applications. Geophys. J.R. Astron. Soc., 48:443–459, 1977.MATHCrossRefGoogle Scholar
  61. 217.
    G. Santhosh and M. Thamban Nair. A class of discrepancy principles for the simplified regularization of ill-posed problems. J. Austr. Math. Soc. Ser. B, 36:242–248, 1995.Google Scholar
  62. 222.
    E. Schock. On the asymptotic order of accuracy of Tikhonov regularization. J. Optim. Theory Appl., 44:95–104, 1984.MathSciNetMATHCrossRefGoogle Scholar
  63. 237.
    A.N. Tikhonov. Regularization of incorrectly posed problems. Sov. Doklady, 4:1624–1627, 1963.MATHGoogle Scholar
  64. 238.
    A.N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Doklady, 4:1035–1038, 1963.Google Scholar
  65. 241.
    S. Twomey. The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements. J. Franklin Inst., 279:95–109, 1965.MathSciNetCrossRefGoogle Scholar
  66. 243.
    J.M. Varah. Pitfalls in the numerical solution of linear ill-posed problems. SIAM J. Sci. Stat. Comput., 4:164–176, 1983.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations