Skip to main content

Therapeutic Utility of Proteasome Inhibitors for Acute Leukemia

  • Chapter
  • First Online:
Book cover New Agents for the Treatment of Acute Lymphoblastic Leukemia
  • 739 Accesses

Abstract

The proteasome inhibitors have emerged as a new and promising class of cancer therapeutics for hematological malignanices. In multiple myeloma and mantle cell lymphoma, bortezomib is the first-in-class proteasome inhibitor to be approved by the US Food and Drug Administration for treatment of these malignancies. In vitro and in vivo data are suggestive of the utility of proteasome inhibitors for acute leukemias and importantly, a Phase-I clinical trial in adult leukemia patients demonstrated biological activity (Cortes et al., Clin Cancer Res. 10:3371-3376, 2004). Here, we describe the rationale for targeting the proteasome, the molecular pharmacology of the proteasome inhibitors and summarize results from clinical trials using proteasome inhibitors as single agents and as a component of multidrug combination therapies. In acute lymphoblastic leukemia (ALL) patients with refractory disease and poor outcomes, the proteasome inhibitors represent an untapped therapeutic resource. Since low doses of proteasome inhibitors display striking synergy with low doses of other agents such as epigenetically targeted drugs (Miller et al. (Blood. 110:267-277, 2007) (Blood. 113(18):4289-4299, 2009)), these investigations hold promise for pediatric and young adult patients, where long-term toxicities and late effects could be minimized by optimizing the use of this class of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999; 59: 2615–2622

    PubMed  CAS  Google Scholar 

  2. Adams J. Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today. 2003; 8: 307–315

    Article  PubMed  CAS  Google Scholar 

  3. Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell. 2004; 5: 417–421

    Article  PubMed  CAS  Google Scholar 

  4. Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest. 2004; 22: 304–311

    Article  PubMed  CAS  Google Scholar 

  5. Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, Sabbatini P, Miller V, Hensley ML, Pezzulli S, Canales C, Daud A, Spriggs DR. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res. 2002; 8: 2505–2511

    PubMed  CAS  Google Scholar 

  6. Bachmann AS. Proteasome inhibitors in pediatric cancer treatment. Hawaii Med J. 2008; 67: 247–249

    PubMed  Google Scholar 

  7. Blade J, Sonneveld P, San Miguel JF, Sutherland HJ, Hajek R, Nagler A, Spencer A, Robak T, Cibeira MT, Zhuang SH, Harousseau JL, Orlowski RZ. Pegylated liposomal doxorubicin plus bortezomib in relapsed or refractory multiple myeloma: efficacy and safety in patients with renal function impairment. Clin Lymphoma Myeloma. 2008; 8: 352–355

    PubMed  CAS  Google Scholar 

  8. Brown ER, Bostrom B, Zhang PL. Morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann Clin Lab Sci. 2004; 34: 203–205

    PubMed  CAS  Google Scholar 

  9. Campana D, Coustan-Smith E, Manabe A, Buschle M, Raimondi SC, Behm FG, Ashmun R, Arico M, Biondi A, Pui CH. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood. 1993; 81: 1025–1031

    PubMed  CAS  Google Scholar 

  10. Chandra J. Oxidative stress by targeted agents promotes cytotoxicity in hematological malignancies. Antioxid Redox Signal. 2008; 11(5): 1123–1137.

    Article  CAS  Google Scholar 

  11. Chauhan D, Li G, Shringarpure R, Podar K, Ohtake Y, Hideshima T, Anderson KC. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res. 2003; 63: 6174–6177

    PubMed  CAS  Google Scholar 

  12. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao TH, Neuteboom ST, Richardson P, Palladino MA, Anderson KC. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005; 8: 407–419

    Article  PubMed  CAS  Google Scholar 

  13. Chauhan D, Hideshima T, Anderson KC. A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J Cancer. 2006; 95: 961–965

    Article  PubMed  CAS  Google Scholar 

  14. Chauhan D, Bianchi G, Anderson KC. Targeting the UPS as therapy in multiple myeloma. BMC Biochem. 2008; 9 Suppl 1: S1

    Google Scholar 

  15. Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA, Anderson KC. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood. 2008; 111: 1654–1664

    Article  PubMed  CAS  Google Scholar 

  16. Chen S, Dai Y, Harada H, Dent P, Grant S. Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res. 2007; 67: 782–791

    Article  PubMed  CAS  Google Scholar 

  17. Cortes J, Thomas D, Koller C, Giles F, Estey E, Faderl S, Garcia-Manero G, McConkey D, Ruiz SL, Guerciolini R, Wright J, Kantarjian H. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res. 2004; 10: 3371–3376

    Article  PubMed  CAS  Google Scholar 

  18. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996; 65: 801–847

    Article  PubMed  CAS  Google Scholar 

  19. Crawford LJ, Walker B, Ovaa H, Chauhan D, Anderson KC, Morris TC, Irvine AE (2006) Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res. 66: 6379–6386

    Article  PubMed  CAS  Google Scholar 

  20. Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007; 67: 6383–6391

    Article  PubMed  CAS  Google Scholar 

  21. Ding WX, Ni HM, Chen X, Yu J, Zhang L, Yin XM. A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther. 2007; 6: 1062–1069

    Article  PubMed  CAS  Google Scholar 

  22. Drexler HC. Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci U S A. 1997; 94: 855–860

    Article  PubMed  CAS  Google Scholar 

  23. Egger L, Madden DT, Rheme C, Rao RV, Bredesen DE. Endoplasmic reticulum stress-induced cell death mediated by the proteasome. Cell Death Differ. 2007; 14: 1172–1180

    Article  PubMed  CAS  Google Scholar 

  24. Fennell DA, Chacko A, Mutti L. BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene. 2008; 27: 1189–1197

    Article  PubMed  CAS  Google Scholar 

  25. Fenteany G, Standaert RF, Reichard GA, Corey EJ, Schreiber SL. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line. Proc Natl Acad Sci U S A. 1994; 91: 3358–3362

    Article  PubMed  CAS  Google Scholar 

  26. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995; 268: 726–731

    Article  PubMed  CAS  Google Scholar 

  27. Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol. 2004; 24: 9695–9704

    Article  PubMed  CAS  Google Scholar 

  28. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, Hale TJ, Soengas MS, Kaufman RJ, Wang CY. Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem. 2006; 281: 31440–31447

    Article  PubMed  CAS  Google Scholar 

  29. Gilmore TD. Multiple myeloma: lusting for NF-kappaB. Cancer Cell. 2007; 12: 95–97

    Article  PubMed  CAS  Google Scholar 

  30. Goldberg AL, Rock K. Not just research tools – proteasome inhibitors offer therapeutic promise. Nat Med. 2002; 8: 338–340

    Article  PubMed  CAS  Google Scholar 

  31. Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007; 35: 12–17

    Article  PubMed  CAS  Google Scholar 

  32. Gomez-Bougie P, Wuilleme-Toumi S, Menoret E, Trichet V, Robillard N, Philippe M, Bataille R, Amiot M. Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 2007; 67: 5418–5424

    Article  PubMed  CAS  Google Scholar 

  33. Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, Fayad L, Dang NH, Samaniego F, Wang M, Broglio K, Samuels B, Gilles F, Sarris AH, Hart S, Trehu E, Schenkein D, Cabanillas F, Rodriguez AM. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005; 23: 667–675

    Article  PubMed  CAS  Google Scholar 

  34. Groll M, Huber R, Potts BC. Crystal Structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in Complex with the 20S Proteasome Reveal Important Consequences of beta-Lactone Ring Opening and a Mechanism for Irreversible Binding. J Am Chem Soc. 2006; 128: 5136–5141

    Article  PubMed  CAS  Google Scholar 

  35. Hanada M, Sugawara K, Kaneta K, Toda S, Nishiyama Y, Tomita K, Yamamoto H, Konishi M, Oki T. Epoxomicin, a new antitumor agent of microbial origin. J Antibiot (Tokyo). 1992; 45: 1746–1752

    PubMed  CAS  Google Scholar 

  36. Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 1983; 258: 8206–8214

    PubMed  CAS  Google Scholar 

  37. Hetz CA. ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal. 2007; 9: 2345–2355

    Article  PubMed  CAS  Google Scholar 

  38. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002; 277: 16639–16647

    Article  PubMed  CAS  Google Scholar 

  39. Howard AN, Bridges KA, Meyn RE, Chandra J. ABT-737, a BH-3 mimetic, induces glutathione depletion and oxidative stress. Cancer Chemother Pharmacol. 2009; 65: 41–54

    Article  PubMed  CAS  Google Scholar 

  40. Jones P, Steinkuhler C. From natural products to small molecule ketone histone deacetylase inhibitors: development of new class specific agents. Curr Pharm Des. 2008; 14: 545–561

    Article  PubMed  Google Scholar 

  41. Jung L, Holle L, Dalton WS. Discovery, Development, and clinical applications of bortezomib. Oncology (Williston Park). 2004; 18: 4–13

    Google Scholar 

  42. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000; 18: 621–663

    Article  PubMed  CAS  Google Scholar 

  43. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov. 2004; 3: 17–26

    Article  PubMed  CAS  Google Scholar 

  44. Khan O, La Thangue NB. Drug Insight: histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. Nat Clin Pract Oncol. 2008; 5: 714–726

    Article  PubMed  CAS  Google Scholar 

  45. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008; 7: 1013–1030

    Article  PubMed  CAS  Google Scholar 

  46. Kisselev AF, Akopian TN, Castillo V, Goldberg AL. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell. 1999; 4: 395–402

    Article  PubMed  CAS  Google Scholar 

  47. Kisselev AF, Garcia-Calvo M, Overkleeft HS, Peterson E, Pennington MW, Ploegh HL, Thornberry NA, Goldberg AL The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem. 2003; 278: 35869–35877

    Article  PubMed  CAS  Google Scholar 

  48. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia. 2000; 14: 399–402

    Article  PubMed  CAS  Google Scholar 

  49. Kraus M, Ruckrich T, Reich M, Gogel J, Beck A, Kammer W, Berkers CR, Burg D, Overkleeft H, Ovaa H, Driessen C. Activity patterns of proteasome subunits reflect bortezomib sensitivity of hematologic malignancies and are variable in primary human leukemia cells. Leukemia. 2007; 21: 84–92

    Article  PubMed  CAS  Google Scholar 

  50. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007; 110: 3281–3290

    Article  PubMed  CAS  Google Scholar 

  51. Kumatori A, Tanaka K, Inamura N, Sone S, Ogura T, Matsumoto T, Tachikawa T, Shin S, Ichihara A. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci U S A. 1990; 87: 7071–7075

    Article  PubMed  CAS  Google Scholar 

  52. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 1998; 8: 397–403

    Article  PubMed  CAS  Google Scholar 

  53. Letai A. BCL-2: found bound and drugged! Trends Mol Med. 2005; 11: 442–444

    Article  PubMed  CAS  Google Scholar 

  54. Li C, Li R, Grandis JR, Johnson DE. Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther. 2008; 7: 1647–1655

    Article  PubMed  CAS  Google Scholar 

  55. Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003; 278: 33714–33723

    Article  PubMed  CAS  Google Scholar 

  56. Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H, Guo L, Wang J. Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol. 2008; 36: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  57. Lu S, Yang J, Song X, Gong S, Zhou H, Guo L, Song N, Bao X, Chen P, Wang J. Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther. 2008; 326: 423–431

    Article  PubMed  CAS  Google Scholar 

  58. Lu S, Chen Z, Yang J, Chen L, Zhou H, Xu X, Li J, Han F, Wang J. The effects of proteasome inhibitor bortezomib on a P-gp positive leukemia cell line K562/A02. Int J Lab Hematol. 2009; 32(1 Pt 1):e123–e131.

    PubMed  Google Scholar 

  59. Ma W, Kantarjian H, O’Brien S, Jilani I, Zhang X, Estrov Z, Ferrajoli A, Keating M, Giles F, Albitar M. Enzymatic activity of circulating proteasomes correlates with clinical behavior in patients with chronic lymphocytic leukemia. Cancer. 2008; 112: 1306–1312

    Article  PubMed  Google Scholar 

  60. Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom ST, Lam KS, Palladino MA, Potts BC. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem. 2005; 48: 3684–3687

    Article  PubMed  CAS  Google Scholar 

  61. Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol. 2007; 18: 716–731

    Article  PubMed  CAS  Google Scholar 

  62. Marchion D, Munster P, Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther, 2007; 7: 583–598

    Article  PubMed  CAS  Google Scholar 

  63. Masdehors P, Omura S, Merle-Beral H, Mentz F, Cosset JM, Dumont J, Magdelenat H, Delic J. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Haematol. 1999; 105: 752–757

    Article  PubMed  CAS  Google Scholar 

  64. Matteson DS. alpha-Amido boronic acids: a synthetic challenge and their properties as serine protease inhibitors. Med Res Rev. 2008; 28: 233–246

    Article  PubMed  CAS  Google Scholar 

  65. McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Update. 2008; 11: 164–179

    Article  CAS  Google Scholar 

  66. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A. 1999; 96: 10403–10408

    Article  PubMed  CAS  Google Scholar 

  67. Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M, Chandra J. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood. 2007; 110: 267–277

    Article  PubMed  CAS  Google Scholar 

  68. Miller CP, Rudra S, Keating MJ, Wierda WG, Palladino M, Chandra J. Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood. 2009; 113(18):4289–4299.

    Article  PubMed  CAS  Google Scholar 

  69. Miller LA, Goldstein NB, Johannes WU, Walton CH, Fujita M, Norris DA, Shellman YG. BH3 Mimetic ABT-737 and a Proteasome Inhibitor Synergistically Kill Melanomas through Noxa-Dependent Apoptosis. J Invest Dermatol. 2008; 129(4):964–971.

    Article  PubMed  CAS  Google Scholar 

  70. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X, Bailey C, Joseph M, Libermann TA, Richon VM, Marks PA, Anderson KC. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A. 2004; 101: 540–545

    Article  PubMed  CAS  Google Scholar 

  71. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R, Munshi NC, Richardson PG, Hideshima T, Chauhan D, Gu X, Bailey C, Joseph M, Libermann TA, Rosen NS, Anderson KC. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006; 107: 1092–1100

    Article  PubMed  CAS  Google Scholar 

  72. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002; 99: 14374–14379

    Article  PubMed  CAS  Google Scholar 

  73. O’Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2005; 23: 676–684

    Article  PubMed  CAS  Google Scholar 

  74. Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF. New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol. 2008; 9: 1157–1165

    Article  PubMed  CAS  Google Scholar 

  75. Okumura K, Huang S, Sinicrope FA. Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res. 2008; 14: 8132–8142

    Article  PubMed  CAS  Google Scholar 

  76. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005; 435: 677–681

    Article  PubMed  CAS  Google Scholar 

  77. Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot (Tokyo). 1991; 44: 113–116

    CAS  Google Scholar 

  78. Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys. 2000; 383: 1–16

    Article  PubMed  CAS  Google Scholar 

  79. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, Baghat R, Lehman MJ, Novick SC, O’Connor OA, Soignet SL. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 2002; 20:4420–4427

    Article  PubMed  CAS  Google Scholar 

  80. Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T, Johri AR, Jones PE, Ivanova A, Van Deventer HW, Gabriel DA, Shea TC, Mitchell BS, Adams J, Esseltine DL, Trehu EG, Green M, Lehman MJ, Natoli S, Collins JM, Lindley CM, Dees EC. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood. 2005; 105: 3058–3065

    Article  PubMed  CAS  Google Scholar 

  81. Orlowski RZ, Nagler A, Sonneveld P, Blade J, Hajek R, Spencer A, San Miguel J, Robak T, Dmoszynska A, Horvath N, Spicka I, Sutherland HJ, Suvorov AN, Zhuang SH, Parekh T, Xiu L, Yuan Z, Rackoff W, Harousseau JL. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol. 2007; 25: 3892–3901

    Article  PubMed  CAS  Google Scholar 

  82. Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 2008; 14: 1649–1657

    Article  PubMed  CAS  Google Scholar 

  83. Ostrowska H, Hempel D, Holub M, Sokolowski J, Kloczko J. Assessment of circulating proteasome chymotrypsin-like activity in plasma of patients with acute and chronic leukemias. Clin Biochem. 2008; 41: 1377–1383

    Article  PubMed  CAS  Google Scholar 

  84. Paoluzzi L, Gonen M, Bhagat G, Furman RR, Gardner JR, Scotto L, Gueorguiev VD, Heaney ML, Manova K, O’Connor OA.The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood. 2008; 112: 2906–2916

    Article  PubMed  CAS  Google Scholar 

  85. Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol. 2004; 22: 2108–2121

    Article  PubMed  CAS  Google Scholar 

  86. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood. 2006; 107: 257–264

    Article  PubMed  CAS  Google Scholar 

  87. Peters JM, Cejka Z, Harris JR, Kleinschmidt JA, Baumeister W. Structural features of the 26 S proteasome complex. J Mol Biol. 1993; 234: 932–937

    Article  PubMed  CAS  Google Scholar 

  88. Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V, Bennett F, Pollock PM, Trent JM, Hendrix MJ, Rizzo P, Miele L, Nickoloff BJ. Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 2005; 65: 6282–6293

    Article  PubMed  CAS  Google Scholar 

  89. Reed JC, Pellecchia M. Apoptosis-based therapies for hematologic malignancies. Blood. 2005; 106: 408–418

    Article  PubMed  CAS  Google Scholar 

  90. Richardson P. Clinical update: proteasome inhibitors in hematologic malignancies. Cancer Treat Rev. 2003; 29 Suppl 1: 33–39

    Article  PubMed  CAS  Google Scholar 

  91. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003; 348: 2609–2617

    Article  PubMed  CAS  Google Scholar 

  92. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin DH, Rajkumar SV, Srkalovic G, Alsina M, Anderson KC. Extended follow-up of a phase II trial in relapsed, refractory multiple myeloma:: final time-to-event results from the SUMMIT trial. Cancer. 2006; 106: 1316–1319

    Article  PubMed  CAS  Google Scholar 

  93. Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, Miguel JS, Blade J, Boccadoro M, Cavenagh J, Alsina M, Rajkumar SV, Lacy M, Jakubowiak A, Dalton W, Boral A, Esseltine DL, Schenkein D, Anderson KC. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood. 2007; 110: 3557–3560

    Article  PubMed  CAS  Google Scholar 

  94. Richardson PG, Mitsiades C, Schlossman R, Ghobrial I, Hideshima T, Munshi N, Anderson KC. Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther. 2008; 8: 1053–1072

    Article  PubMed  CAS  Google Scholar 

  95. Roccaro AM, Leleu X, Sacco A, Jia X, Melhem M, Moreau AS, Ngo HT, Runnels J, Azab A, Azab F, Burwick N, Farag M, Treon SP, Palladino MA, Hideshima T, Chauhan D, Anderson KC, Ghobrial IM. Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2008; 111: 4752–4763

    Article  PubMed  CAS  Google Scholar 

  96. Ruiz S, Krupnik Y, Keating M, Chandra J, Palladino M, McConkey D. The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol Cancer Ther. 2006; 5: 1836–1843

    Article  PubMed  CAS  Google Scholar 

  97. Russo SM, Tepper JE, Baldwin AS, Jr., Liu R, Adams J, Elliott P, Cusack JC, Jr. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys. 2001; 50: 183–193

    Article  PubMed  CAS  Google Scholar 

  98. Shringarpure R, Catley L, Bhole D, Burger R, Podar K, Tai YT, Kessler B, Galardy P, Ploegh H, Tassone P, Hideshima T, Mitsiades C, Munshi NC, Chauhan D, Anderson KC. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006; 134: 145–156

    Article  PubMed  CAS  Google Scholar 

  99. Srikanth M, Davies FE, Morgan GJ. An update on drug combinations for treatment of myeloma. Expert Opin Investig Drugs. 2008; 17: 1–12

    Article  PubMed  CAS  Google Scholar 

  100. Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl Bancroft C, Sausville E, Adams J, Elliott P, Van Waes C. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res. 2001; 7: 1419–1428

    PubMed  CAS  Google Scholar 

  101. Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis: mechanisms and relevance in cancer. Ann Hematol. 2005; 84: 627–639

    Article  PubMed  CAS  Google Scholar 

  102. Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999; 68: 1015–1068

    Article  PubMed  CAS  Google Scholar 

  103. Williams S, Pettaway C, Song R, Papandreou C, Logothetis C, McConkey DJ. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther. 2003; 2: 835–843

    PubMed  CAS  Google Scholar 

  104. Williamson MJ, Blank JL, Bruzzese FJ, Cao Y, Daniels JS, Dick LR, Labutti J, Mazzola AM, Patil AD, Reimer CL, Solomon MS, Stirling M, Tian Y, Tsu CA, Weatherhead GS, Zhang JX, Rolfe M. Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Mol Cancer Ther. 2006; 5: 3052–3061

    Article  PubMed  CAS  Google Scholar 

  105. Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004; 1695: 19–31

    Article  PubMed  CAS  Google Scholar 

  106. Yan H, Wang YC, Li D, Wang Y, Liu W, Wu YL, Chen GQ. Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cdelta. Leukemia. 2007; 21: 1488–1495

    Article  PubMed  CAS  Google Scholar 

  107. Yi CH, Yuan J. The Jekyll and Hyde functions of caspases. Dev Cell. 2009; 16: 21–34

    Article  PubMed  CAS  Google Scholar 

  108. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9: 47–59

    Article  PubMed  CAS  Google Scholar 

  109. Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE, Carter CA, Roberts LR, Kaufmann SH, Adjei AA. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006; 5: 2378–2387

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joya Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this chapter

Cite this chapter

Chandra, J., Miller, C.P. (2011). Therapeutic Utility of Proteasome Inhibitors for Acute Leukemia. In: Saha, V., Kearns, P. (eds) New Agents for the Treatment of Acute Lymphoblastic Leukemia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8459-3_13

Download citation

Publish with us

Policies and ethics