Skip to main content

The Role of the Oocyte in Remodeling of Male Chromatin and DNA Repair: Are Events During the Zygotic Cell Cycle of Relevance to ART?

  • Chapter
  • First Online:
Biennial Review of Infertility

Abstract

Transmission of male genetic material through highly differentiated and specialized sperm cells is a highly dynamic process, in which the zygote plays a major role. Chromatin remodeling and DNA repair are involved, both during spermatid nuclear elongation and after gamete fusion at chromatin remodeling from a protamine dominated towards a nucleosomal chromatin state. Roles for DNA repair are further envisaged for zygotic G1 and S-phases, with an active role of the maternal complement toward the male PN. In this chapter, findings from mainly the mouse, extending into paternal DNA demethylation in the zygote, have been integrated. Although biological insight into the roles of the oocyte toward chromatin of the sperm cell is developing, there is a gap between the current knowledge for mouse and the observations made on human sperm DNA and chromatin, fertilization efficiency (after IVF and ICSI), and the subsequent zygote and cleavage stage development of human embryos. In part, this is due to the use of normal mouse sperm for research, whereas in male factor infertility, the fraction of normal gametes can be sharply reduced. On the other hand, human oocytes will not be homogeneous in chromatin remodeling and DNA repair capacity. Nevertheless, there are enough experimental data in transmission biology to make a plea for more careful monitoring of DNA and chromatin in ART children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer W, Smith A, Fundele R, Haaf T. Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol. 2000;148(4):629–34.

    PubMed  CAS  Google Scholar 

  2. Li MW, Willis BJ, Griffey SM, Spearow JL, Lloyd KC. Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote (Cambridge, England). 2009;17(3):239–51.

    Google Scholar 

  3. Caperton L, Murphey P, Yamazaki Y, et al. Assisted reproductive technologies do not alter mutation frequency or spectrum. Proc Natl Acad Sci USA. 2007;104(12):5085–90.

    PubMed  CAS  Google Scholar 

  4. Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod. 1995;52(4): 709–20.

    PubMed  CAS  Google Scholar 

  5. Fernandez-Gonzalez R, Moreira PN, Perez-Crespo M, et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78(4):761–72.

    PubMed  CAS  Google Scholar 

  6. Lewis SE. Is sperm evaluation useful in predicting human fertility? Reproduction (Cambridge, England). 2007;134(1):31–40.

    CAS  Google Scholar 

  7. van der Heijden GW, Dieker JW, Derijck AA, et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev. 2005;122(9):1008–22.

    PubMed  Google Scholar 

  8. Bernstein E, Hake SB. The nucleosome: a little variation goes a long way. Biochem Cell Biol. 2006;84(4): 505–17.

    PubMed  CAS  Google Scholar 

  9. Bizzaro D, Manicardi G, Bianchi PG, Sakkas D. Sperm decondensation during fertilisation in the mouse: presence of DNase I hypersensitive sites in situ and a putative role for topoisomerase II. Zygote (Cambridge, England). 2000;8(3):197–202.

    CAS  Google Scholar 

  10. Derijck AA, van der Heijden GW, Giele M, Philippens ME, VanBavel CC, de Boer P. gammaH2AX signalling during sperm chromatin remodelling in the mouse zygote. DNA Repair. 2006;5(8):959–71.

    PubMed  CAS  Google Scholar 

  11. Tateno H, Kamiguchi Y. Chromosome analysis of mouse one-cell androgenones derived from a sperm nucleus exposed to topoisomerase II inhibitors at pre- and post-fertilization stages. Mutat Res. 2004; 556(1–2):117–26.

    PubMed  CAS  Google Scholar 

  12. Laberge RM, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73(2):289–96.

    PubMed  CAS  Google Scholar 

  13. McPherson SM, Longo FJ. Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol. 1993;158(1):122–30.

    PubMed  CAS  Google Scholar 

  14. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265(33):20662–6.

    PubMed  CAS  Google Scholar 

  15. van der Heijden GW, Ramos L, Baart EB, et al. Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol. 2008;8:34.

    PubMed  Google Scholar 

  16. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    PubMed  CAS  Google Scholar 

  17. Brykczynska U, Hisano M, Erkek S, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87.

    PubMed  CAS  Google Scholar 

  18. Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088–95.

    PubMed  CAS  Google Scholar 

  19. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–6.

    PubMed  CAS  Google Scholar 

  20. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421–33.

    PubMed  CAS  Google Scholar 

  21. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod. 2008;78(2):324–32.

    PubMed  CAS  Google Scholar 

  22. Meyer-Ficca ML, Lonchar J, Credidio C, et al. Disruption of poly(ADP-ribose) homeostasis affects spermiogenesis and sperm chromatin integrity in mice. Biol Reprod. 2009;81(1):46–55.

    PubMed  CAS  Google Scholar 

  23. El-Domyati MM, Al-Din AB, Barakat MT, El-Fakahany HM, Xu J, Sakkas D. Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly(adenosine diphosphate-ribosyl)ation pathway. Fertil Steril. 2009;91(5 Suppl):2221–9.

    PubMed  CAS  Google Scholar 

  24. Maymon BB, Cohen-Armon M, Yavetz H, et al. Role of poly(ADP-ribosyl)ation during human spermatogenesis. Fertil Steril. 2006;86(5):1402–7.

    PubMed  CAS  Google Scholar 

  25. Jha R, Agarwal A, Mahfouz R, et al. Determination of Poly (ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation. Fertil Steril. 2009;91(3):782–90.

    PubMed  CAS  Google Scholar 

  26. Eirin-Lopez JM, Ausio J. Origin and evolution of chromosomal sperm proteins. Bioessays. 2009;31(10):1062–70.

    PubMed  CAS  Google Scholar 

  27. Levesque D, Veilleux S, Caron N, Boissonneault G. Architectural DNA-binding properties of the spermatidal transition proteins 1 and 2. Biochem Biophys Res Commun. 1998;252(3):602–9.

    PubMed  CAS  Google Scholar 

  28. Marchetti F, Wyrobek AJ. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA Repair. 2008;7(4): 572–81.

    PubMed  CAS  Google Scholar 

  29. Leduc F, Nkoma GB, Boissonneault G. Spermio­genesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med. 2008;54(1):3–10.

    PubMed  CAS  Google Scholar 

  30. Kamiguchi Y, Tateno H. Radiation- and chemical-induced structural chromosome aberrations in human spermatozoa. Mutat Res. 2002;504(1–2):183–91.

    PubMed  CAS  Google Scholar 

  31. Matsuda Y, Yamada T, Tobari I. Studies on chromosome aberrations in the eggs of mice fertilized in vitro after irradiation. I. Chromosome aberrations induced in sperm after X-irradiation. Mutat Res. 1985; 148(1–2):113–7.

    PubMed  CAS  Google Scholar 

  32. Matsuda Y, Tobari I. Repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes. Mutat Res. 1989;210(1):35–47.

    PubMed  CAS  Google Scholar 

  33. van Loon AA, Sonneveld E, Hoogerbrugge J, et al. Induction and repair of DNA single-strand breaks and DNA base damage at different cellular stages of spermatogenesis of the hamster upon in vitro exposure to ionizing radiation. Mutat Res. 1993;294(2):139–48.

    PubMed  Google Scholar 

  34. Marchetti F, Wyrobek AJ. Mechanisms and consequences of paternally-transmitted chromosomal abnormalities. Birth Defects Res C Embryo Today. 2005;75(2):112–29.

    PubMed  CAS  Google Scholar 

  35. Svetlova MP, Solovjeva LV, Tomilin NV. Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks. Mutat Res. 2010;685(1–2):54–60.

    PubMed  CAS  Google Scholar 

  36. Barratt CL, Aitken RJ, Bjorndahl L, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod (Oxford, England). 2010;25(4):824–38.

    Google Scholar 

  37. Santiso R, Muriel L, Goyanes V, Segrelles E, Gosalvez J, Fernandez JL. Evidence of modified nuclear protein matrix in human spermatozoa with fragmented deoxyribonucleic acid. Fertil Steril. 2007;87(1):191–4.

    PubMed  Google Scholar 

  38. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science (New York, NY). 1987;236(4804):962–4.

    CAS  Google Scholar 

  39. Ramos L, van der Heijden GW, Derijck A, et al. Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod (Oxford, England). 2008; 23(2):259–70.

    CAS  Google Scholar 

  40. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    PubMed  Google Scholar 

  41. van der Heijden GW, Derijck AA, Ramos L, Giele M, van der Vlag J, de Boer P. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol. 2006;298(2):458–69.

    PubMed  Google Scholar 

  42. McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction (Cambridge, England). 2003;125(5):625–33.

    CAS  Google Scholar 

  43. Perreault SD, Barbee RR, Slott VL. Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev Biol. 1988;125(1):181–6.

    PubMed  CAS  Google Scholar 

  44. Perreault SD, Wolff RA, Zirkin BR. The role of disulfide bond reduction during mammalian sperm nuclear decondensation in vivo. Dev Biol. 1984;101(1):160–7.

    PubMed  CAS  Google Scholar 

  45. Philpott A, Leno GH, Laskey RA. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell. 1991;65(4):569–78.

    PubMed  CAS  Google Scholar 

  46. Ohsumi K, Katagiri C. Characterization of the ooplasmic factor inducing decondensation of and protamine removal from toad sperm nuclei: involvement of nucleoplasmin. Dev Biol. 1991;148(1):295–305.

    PubMed  CAS  Google Scholar 

  47. Burns KH, Viveiros MM, Ren Y, et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science (New York, NY). 2003;300(5619):633–6.

    CAS  Google Scholar 

  48. Romanato M, Cameo MS, Bertolesi G, Baldini C, Calvo JC, Calvo L. Heparan sulphate: a putative decondensing agent for human spermatozoa in vivo. Hum Reprod (Oxford, England). 2003;18(9):1868–73.

    CAS  Google Scholar 

  49. Romanato M, Julianelli V, Zappi M, Calvo L, Calvo JC. The presence of heparan sulfate in the mammalian oocyte provides a clue to human sperm nuclear decondensation in vivo. Hum Reprod (Oxford, England). 2008;23(5):1145–50.

    CAS  Google Scholar 

  50. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev. 2010;11(4):285–96.

    CAS  Google Scholar 

  51. Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouza­rides T, Zernicka-Goetz M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol. 2006;50(5):455–61.

    PubMed  CAS  Google Scholar 

  52. Orsi GA, Couble P, Loppin B. Epigenetic and replacement roles of histone variant H3.3 in reproduction and development. Int J Dev Biol. 2009;53(2–3):231–43.

    PubMed  CAS  Google Scholar 

  53. Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol. 1998;18(6): 3350–6.

    PubMed  CAS  Google Scholar 

  54. Peters AH, Schubeler D. Methylation of histones: playing memory with DNA. Curr Opin Cell Biol. 2005;17(2):230–8.

    PubMed  CAS  Google Scholar 

  55. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447(7143): 407–12.

    PubMed  CAS  Google Scholar 

  56. Cheng X, Blumenthal RM. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry. 2010;49(14): 2999–3008.

    PubMed  CAS  Google Scholar 

  57. Lepikhov K, Walter J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol. 2004;4:12.

    PubMed  Google Scholar 

  58. Liu H, Kim JM, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development (Cambridge, England). 2004;131(10):2269–80.

    CAS  Google Scholar 

  59. Ooi SL, Henikoff S. Germline histone dynamics and epigenetics. Curr Opin Cell Biol. 2007;19(3):257–65.

    PubMed  CAS  Google Scholar 

  60. Puschendorf M, Terranova R, Boutsma E, et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet. 2008;40(4):411–20.

    PubMed  CAS  Google Scholar 

  61. Corry GN, Tanasijevic B, Barry ER, Krueger W, Rasmussen TP. Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today. 2009;87(4):297–313.

    PubMed  CAS  Google Scholar 

  62. Weaver JR, Susiarjo M, Bartolomei MS. Imprinting and epigenetic changes in the early embryo. Mamm Genome. 2009;20(9–10):532–43.

    PubMed  Google Scholar 

  63. van der Heijden GW, van den Berg IM, Baart EB, Derijck AA, Martini E, de Boer P. Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI. Mol Reprod Dev. 2009;76(1): 101–8.

    PubMed  Google Scholar 

  64. St Pierre J, Wright DJ, Rowe TC, Wright SJ. DNA topoisomerase II distribution in mouse preimplantation embryos. Mol Reprod Dev. 2002;61(3):335–46.

    PubMed  CAS  Google Scholar 

  65. Ramalho Santos J, Sutovsky P, Simerly C, et al. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum Reprod (Oxford, England). 2000;15(12): 2610–20.

    CAS  Google Scholar 

  66. Baart EB, van der Heijden GW, van der Hoeven FA, Bakker R, Cooper TG, de Boer P. Reduced oocyte activation and first cleavage rate after ICSI with spermatozoa from a sterile mouse chromosome mutant. Hum Reprod (Oxford, England). 2004;19(5):1140–7.

    CAS  Google Scholar 

  67. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.

    PubMed  CAS  Google Scholar 

  68. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146(5):905–16.

    PubMed  CAS  Google Scholar 

  69. Ray A, Mir SN, Wani G, et al. Human SNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex, promotes nucleotide excision repair by influencing ATM recruitment and downstream H2AX phosphorylation. Mol Cell Biol. 2009;29(23):6206–19.

    PubMed  CAS  Google Scholar 

  70. Brandriff B, Pedersen RA. Repair of the ultraviolet-irradiated male genome in fertilized mouse eggs. Science (New York, NY). 1981;211(4489):1431–3.

    CAS  Google Scholar 

  71. Matsuda Y, Tobari I. Chromosomal analysis in mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS). Mutat Res. 1988;198(1): 131–44.

    PubMed  CAS  Google Scholar 

  72. Hartlerode AJ, Scully R. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J. 2009;423(2):157–68.

    PubMed  CAS  Google Scholar 

  73. Iliakis G. Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol. 2009;92(3):310–5.

    PubMed  CAS  Google Scholar 

  74. Okayasu R, Suetomi K, Yu Y, et al. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse. Cancer Res. 2000;60(16): 4342–5.

    PubMed  CAS  Google Scholar 

  75. Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci USA. 1991;88(4):1394–7.

    PubMed  CAS  Google Scholar 

  76. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17(13):1922–37.

    PubMed  CAS  Google Scholar 

  77. Marchetti F, Essers J, Kanaar R, Wyrobek AJ. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci USA. 2007;104(45):17725–9.

    PubMed  CAS  Google Scholar 

  78. Derijck AA, van der Heijden GW, Ramos L, Giele M, Kremer JA, de Boer P. Motile human normozoospermic and oligozoospermic semen samples show a difference in double-strand DNA break incidence. Hum Reprod (Oxford, England). 2007;22(9):2368–76.

    Google Scholar 

  79. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 2003;100(9):5057–62.

    PubMed  CAS  Google Scholar 

  80. Tateno H, Kamiguchi Y, Watanabe S, Mikamo K, Sawada S. Relative biological effectiveness (RBE) of 252Cf fission neutrons for the induction of chromosome damage in human spermatozoa. Int J Radiat Biol. 1996;70(2):229–35.

    PubMed  CAS  Google Scholar 

  81. Vanneste E, Voet T, Le Caignec C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83.

    PubMed  CAS  Google Scholar 

  82. Russel L, Saylors C. The relative sensitivity of various germcell stages of the mouse to radiation induced non-disjunction, chromosome losses and deficiencies. In: Sobels F, editor. Repair from genetic radiation damage and differential radiosensibility in germ cells. Oxford: Pergamon Press; 1963. p. 313–40.

    Google Scholar 

  83. Matsuda Y, Seki N, Utsugi-Takeuchi T, Tobari I. Changes in X-ray sensitivity of mouse eggs from fertilization to the early pronuclear stage, and their repair capacity. Int J Radiat Biol. 1989;55(2):233–56.

    PubMed  CAS  Google Scholar 

  84. Grinfeld S, Jacquet P. An unusual radiation-induced G2 arrest in the zygote of the BALB/c mouse strain. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;51(2):353–63.

    PubMed  CAS  Google Scholar 

  85. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403(6769):501–2.

    PubMed  CAS  Google Scholar 

  86. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241(1):172–82.

    PubMed  CAS  Google Scholar 

  87. Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.

    PubMed  CAS  Google Scholar 

  88. Wossidlo M, Arand J, Sebastiano V, et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 2010;29(11): 1877–88.

    PubMed  CAS  Google Scholar 

  89. Beaujean N, Hartshorne G, Cavilla J, et al. Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol. 2004;14(7):R266–7.

    PubMed  CAS  Google Scholar 

  90. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature. 2010;463(7280): 554–8.

    PubMed  CAS  Google Scholar 

  91. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

    PubMed  CAS  Google Scholar 

  92. Audebert M, Salles B, Weinfeld M, Calsou P. Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol. 2006;356(2): 257–65.

    PubMed  CAS  Google Scholar 

  93. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010;329(5987):78–82.

    PubMed  CAS  Google Scholar 

  94. Hirasawa R, Chiba H, Kaneda M, et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 2008; 22(12):1607–16.

    PubMed  CAS  Google Scholar 

  95. Nakamura T, Arai Y, Umehara H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol. 2007;9(1):64–71.

    PubMed  CAS  Google Scholar 

  96. Stitzel ML, Seydoux G. Regulation of the oocyte-to-zygote transition. Science (New York NY). 2007; 316(5823):407–8.

    CAS  Google Scholar 

  97. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.

    PubMed  CAS  Google Scholar 

  98. Li X, Ito M, Zhou F, et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008;15(4):547–57.

    PubMed  CAS  Google Scholar 

  99. Reese KJ, Lin S, Verona RI, Schultz RM, Bartolomei MS. Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet. 2007;3(8):e137.

    PubMed  Google Scholar 

  100. Terranova R, Yokobayashi S, Stadler MB, et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell. 2008;15(5):668–79.

    PubMed  CAS  Google Scholar 

  101. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2010; 19(1):36–51.

    PubMed  CAS  Google Scholar 

  102. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod (Oxford, England). 2008;23(12):2826–34.

    Google Scholar 

  103. Chandley AC. On the parental origin of de novo mutation in man. J Med Genet. 1991;28(4):217–23.

    PubMed  CAS  Google Scholar 

  104. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991;49(5):995–1013.

    PubMed  CAS  Google Scholar 

  105. Suganuma R, Yanagimachi R, Meistrich ML. Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod (Oxford, England). 2005;20(11):3101–8.

    CAS  Google Scholar 

  106. de Boer P, Ramos L, de Vries M, Gochhait S. Memoirs of an insult: sperm as a possible source of transgenerational epimutations and genetic instability. Mol Hum Reprod. 2010;16(1):48–56.

    PubMed  Google Scholar 

  107. Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechali M. Mitotic remodeling of the replicon and chromosome structure. Cell. 2005;123(5):787–801.

    PubMed  CAS  Google Scholar 

  108. Courbet S, Gay S, Arnoult N, et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature. 2008;455(7212):557–60.

    PubMed  CAS  Google Scholar 

  109. de Mateo S, Ramos L, van der Vlag J, de Boer P, Oliva R. Improvement in chromatin maturity of human spermatozoa selected through density gradient centrifugation. Int J Androl. 20 June, 2010.

    Google Scholar 

  110. Steger K, Failing K, Klonisch T, et al. Round spermatids from infertile men exhibit decreased protamine-1 and -2 mRNA. Hum Reprod (Oxford, England). 2001;16(4):709–16.

    CAS  Google Scholar 

  111. Depa-Martynow M, Kempisty B, Lianeri M, Jagodzinski PP, Jedrzejczak P. Association between fertilin beta, protamines 1 and 2 and spermatid-­specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos. Folia Histochem Cytobiol. 2007;45 (Suppl) 1:S79–85.

    PubMed  Google Scholar 

  112. de Mateo S, Gazquez C, Guimera M, et al. Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91(3):715–22.

    PubMed  Google Scholar 

  113. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    PubMed  CAS  Google Scholar 

  114. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod (Oxford, England). 2005;20(5):1298–306.

    CAS  Google Scholar 

  115. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    PubMed  CAS  Google Scholar 

  116. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007; 13(3):313–27.

    PubMed  CAS  Google Scholar 

  117. Aoki VW, Liu L, Jones KP, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–15.

    PubMed  CAS  Google Scholar 

  118. Torregrosa N, Dominguez-Fandos D, Camejo MI, et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod (Oxford England). 2006;21(8):2084–9.

    CAS  Google Scholar 

  119. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.

    PubMed  CAS  Google Scholar 

  120. Hammoud S, Liu L, Carrell DT. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia. 2009;41(2):88–94.

    PubMed  CAS  Google Scholar 

  121. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod (Oxford, England). 2004;19(3):611–5.

    CAS  Google Scholar 

  122. Toyoshima M. Analysis of p53 dependent damage response in sperm-irradiated mouse embryos. J Radiat Res. 2009;50(1):11–7.

    PubMed  Google Scholar 

  123. Marchetti F, Bishop JB, Cosentino L, Moore II D, Wyrobek AJ. Paternally transmitted chromosomal aberrations in mouse zygotes determine their embryonic fate. Biol Reprod. 2004;70(3):616–24.

    PubMed  CAS  Google Scholar 

  124. Fatehi AN, Bevers MM, Schoevers E, Roelen BA, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27(2):176–88.

    PubMed  CAS  Google Scholar 

  125. Ahmadi A, Ng SC. Developmental capacity of damaged spermatozoa. Hum Reprod (Oxford, England). 1999;14(9):2279–85.

    CAS  Google Scholar 

  126. Shimura T, Inoue M, Taga M, et al. p53-dependent S-phase damage checkpoint and pronuclear cross talk in mouse zygotes with X-irradiated sperm. Mol Cell Biol. 2002;22(7):2220–8.

    PubMed  CAS  Google Scholar 

  127. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    PubMed  CAS  Google Scholar 

  128. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    PubMed  CAS  Google Scholar 

  129. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod (Oxford, England). 2008;23(12):2663–8.

    CAS  Google Scholar 

  130. Greco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod (Oxford, England). 2005;20(1):226–30.

    Google Scholar 

  131. Meseguer M, Martinez-Conejero JA, O’Connor JE, Pellicer A, Remohi J, Garrido N. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89(5):1191–9.

    PubMed  Google Scholar 

  132. Barroso G, Valdespin C, Vega E, et al. Developmental sperm contributions: fertilization and beyond. Fertil Steril. 2009;92(3):835–48.

    PubMed  CAS  Google Scholar 

  133. Scott L, Finn A, O’Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod (Oxford, England). 2007;22(1):230–40.

    CAS  Google Scholar 

  134. Ciray HN, Karagenc L, Ulug U, Bener F, Bahceci M. Use of both early cleavage and day 2 mononucleation to predict embryos with high implantation potential in intracytoplasmic sperm injection cycles. Fertil Steril. 2005;84(5):1411–6.

    PubMed  Google Scholar 

  135. Tsai YC, Chung MT, Sung YH, Tsai TF, Tsai YT, Lin LY. Clinical value of early cleavage embryo. Int J Gynaecol Obstet. 2002;76(3):293–7.

    PubMed  CAS  Google Scholar 

  136. Van Montfoort AP, Dumoulin JC, Kester AD, Evers JL. Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod (Oxford, England). 2004;19(9):2103–8.

    Google Scholar 

  137. Fu J, Wang XJ, Wang YW, Sun J, Gemzell-Danielsson K, Sun XX. The influence of early cleavage on embryo developmental potential and IVF/ICSI outcome. J Assist Reprod Genet. 2009;26(8):437–41.

    PubMed  CAS  Google Scholar 

  138. Fenwick J, Platteau P, Murdoch AP, Herbert M. Time from insemination to first cleavage predicts ­developmental competence of human preimplantation embryos in vitro. Hum Reprod (Oxford England). 2002;17(2):407–12.

    CAS  Google Scholar 

  139. Sakkas D, Percival G, D’Arcy Y, Sharif K, Afnan M. Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection. Fertil Steril. 2001;76(6):1150–6.

    PubMed  CAS  Google Scholar 

  140. Lundin K, Bergh C, Hardarson T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod (Oxford, England). 2001;16(12):2652–7.

    CAS  Google Scholar 

  141. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.

    PubMed  CAS  Google Scholar 

  142. Barros A, Sousa M, Oliveira C, Silva J, Almeida V, Beires J. Pregnancy and birth after intracytoplasmic sperm injection with totally immotile sperm recovered from the ejaculate. Fertil Steril. 1997;67(6):1091–4.

    PubMed  CAS  Google Scholar 

  143. McKenzie LJ, Kovanci E, Amato P, Cisneros P, Lamb D, Carson SA. Pregnancy outcome of in vitro fertilization/intracytoplasmic sperm injection with profound teratospermia. Fertil Steril. 2004;82(4):847–9.

    PubMed  Google Scholar 

  144. Tejera A, Molla M, Muriel L, Remohi J, Pellicer A, De Pablo JL. Successful pregnancy and childbirth after intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient. Fertil Steril. 2008;90(4):1202.e1–5.

    Google Scholar 

  145. Gandini L, Lombardo F, Paoli D, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod (Oxford, England). 2004;19(6):1409–17.

    CAS  Google Scholar 

  146. Filkowski JN, Ilnytskyy Y, Tamminga J, et al. Hypomethy­lation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis. 2010;31(6):1110–5.

    PubMed  CAS  Google Scholar 

  147. Wyrobek AJ, Eskenazi B, Young S, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA. 2006;103(25): 9601–6.

    PubMed  CAS  Google Scholar 

  148. Ferreira RC, Braga DP, Bonetti TC, Pasqualotto FF, Iaconelli Jr A, Borges Jr E. Negative influence of paternal age on clinical intracytoplasmic sperm injection cycle outcomes in oligozoospermic patients. Fertil Steril. 2010;93(6):1870–4.

    PubMed  Google Scholar 

  149. Frattarelli JL, Miller KA, Miller BT, Elkind-Hirsch K, Scott Jr RT. Male age negatively impacts embryo development and reproductive outcome in donor oocyte assisted reproductive technology cycles. Fertil Steril. 2008;90(1):97–103.

    PubMed  Google Scholar 

  150. Woldringh GH, Janssen IM, Hehir-Kwa JY, et al. Constitutional DNA copy number changes in ICSI children. Hum Reprod (Oxford, England). 2009;24(1):233–40.

    CAS  Google Scholar 

  151. Ceelen M, van Weissenbruch MM, Prein J, et al. Growth during infancy and early childhood in ­relation to blood pressure and body fat measures at age 8-18 years of IVF children and spontaneously ­conceived controls born to subfertile parents. Hum Reprod (Oxford, England). 2009;24(11): 2788–95.

    Google Scholar 

  152. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93(5):1682–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Godfried van der Heijden is thanked for comments on the setup of this chapter and Marieke de Vries for final comments and checking the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramos, L., de Boer, P. (2011). The Role of the Oocyte in Remodeling of Male Chromatin and DNA Repair: Are Events During the Zygotic Cell Cycle of Relevance to ART?. In: Racowsky, C., Schlegel, P., Fauser, B., Carrell, D. (eds) Biennial Review of Infertility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8456-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8456-2_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8455-5

  • Online ISBN: 978-1-4419-8456-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics