Skip to main content

ART and Epigenetic Disorders: Should We Be Concerned?

  • Chapter
  • First Online:
  • 632 Accesses

Abstract

An ART treatment cycle – comprising a basic sequence of ovarian ­stimulation, oocyte retrieval, embryo culture, and transfer – is, by conventional measures, a routine and comparatively safe medical intervention. The greatest risks from ART derive from the complications associated with multiple pregnancies. Yet, studies indicate that even a singleton pregnancy from ART confers greater health risks than that of natural conceptions. In this section, we review the established associations of ART to rare epigenetic disorders of imprinting. The biologic mechanisms through which epigenetic programming might be altered within the process of ART are examined. The still unknown long-term health associations of ART past 30 years are considered in the framework of emerging and increasing compelling evidence that environmental conditions during the early development are an important determinant of health during later adult years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Mouzon J, Lancaster P, Nygren KG, et al. World collaborative report on Assisted Reproductive Tech­nology, 2002. Hum Reprod. 2009;24(9):2310–20.

    PubMed  Google Scholar 

  2. Ceelen M, van Weissenbruch MM, Roos JC, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab. 2007;92(9): 3417–23.

    PubMed  CAS  Google Scholar 

  3. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Pubertal development in children and adolescents born after IVF and spontaneous conception. Hum Reprod. 2008;23(12):2791–8.

    Article  PubMed  Google Scholar 

  4. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA, Ceelen M. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93(5):1682–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertil Steril. 2008;90(5):1662–73.

    Article  PubMed  Google Scholar 

  6. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992; 340(8810):17–8.

    Article  PubMed  CAS  Google Scholar 

  7. SART Member Clinics. Clinic summary report for 2008. 2010. Accessed 7 Oct 2010.

    Google Scholar 

  8. Handyside AH, Kontogianni EH, Hardy K, Winston RM. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.

    Article  PubMed  CAS  Google Scholar 

  9. Atwood J, Dobins S. Storm clouds are coming: ways to help couples reconstruct the crisis of infertility. Contemp Fam Ther. 1992;14(5):385–403.

    Article  Google Scholar 

  10. Collins J, Graves G. The economic consequences of multiple gestation pregnancy in assisted conception cycles. Hum Fertil (Camb). 2000;3(4):275–83.

    Article  Google Scholar 

  11. Chambers GM, Chapman MG, Grayson N, Shanahan M, Sullivan EA. Babies born after ART treatment cost more than non-ART babies: a cost analysis of inpatient birth-admission costs of singleton and multiple gestation pregnancies. Hum Reprod. 2007;22(12): 3108–15.

    Article  PubMed  Google Scholar 

  12. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63.

    Article  PubMed  Google Scholar 

  13. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328(7434):261.

    Article  PubMed  Google Scholar 

  14. McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertil Steril. 2004;82(6):1514–20.

    Article  PubMed  Google Scholar 

  15. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects – a systematic review. Hum Reprod. 2005;20(2):328–38.

    PubMed  Google Scholar 

  16. Lie R, Lyngstadass A, Orstavik K. Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. Int J Epidemiol. 2005;34:696–701.

    Article  PubMed  Google Scholar 

  17. Wennerholm UB, Bergh C, Hamberger L, et al. Incidence of congenital malformations in children born after ICSI. Hum Reprod. 2000;15(4):944–8.

    Article  PubMed  CAS  Google Scholar 

  18. Brinton LA, Westhoff CL, Scoccia B, et al. Causes of infertility as predictors of subsequent cancer risk. Epidemiology. 2005;16(4):500–7.

    Article  PubMed  Google Scholar 

  19. Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective. Hum Reprod Update. 2005;11(5):473–82.

    Article  PubMed  Google Scholar 

  20. Sills ES, Moomjy M, Zaninovic N, et al. Human zona pellucida micromanipulation and monozygotic twinning frequency after IVF. Hum Reprod. 2000;15(4): 890–5.

    Article  PubMed  CAS  Google Scholar 

  21. Blickstein I, Jones C, Keith LG. Zygotic-splitting rates after single-embryo transfers in in vitro fertilization. N Engl J Med. 2003;348(23):2366–7.

    Article  PubMed  Google Scholar 

  22. Skiadas CC, Missmer SA, Benson CB, Gee RE, Racowsky C. Risk factors associated with pregnancies containing a monochorionic pair following assisted reproductive technologies. Hum Reprod. 2008;23(6):1366–71.

    Article  PubMed  Google Scholar 

  23. Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219(2):243–50.

    Article  PubMed  CAS  Google Scholar 

  24. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.

    Article  PubMed  CAS  Google Scholar 

  25. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105(1):4–13.

    Article  PubMed  CAS  Google Scholar 

  26. Waddington C. The strategy of genes. London: George Allen & Unwin; 1957.

    Google Scholar 

  27. Illingworth R, Kerr A, Desousa D, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 2008;6(1):e22.

    Article  PubMed  CAS  Google Scholar 

  28. Bird A, Wolffe A. Methylation-induced repression-belts, braces, and chromatin. Cell. 1999;99:451–4.

    Article  PubMed  CAS  Google Scholar 

  29. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–5.

    Article  PubMed  CAS  Google Scholar 

  30. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001; 293(5532):1089–93.

    Article  PubMed  CAS  Google Scholar 

  31. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463(7284):1042–7.

    Article  PubMed  CAS  Google Scholar 

  32. Szyf M. The early life environment and the epigenome. Biochim Biophys Acta. 2009;1790(9): 878–85.

    PubMed  CAS  Google Scholar 

  33. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature. 2010;463(7280): 554–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  35. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14(14):R546–51.

    Article  PubMed  CAS  Google Scholar 

  36. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF. RNA regulation of epigenetic processes. Bioessays. 2009;31(1):51–9.

    Article  PubMed  CAS  Google Scholar 

  37. Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev. 2009;8(4):268–76.

    Article  PubMed  CAS  Google Scholar 

  38. Weaver I, Cervoni N, Champagne F, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54.

    Article  PubMed  CAS  Google Scholar 

  39. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–15.

    Article  PubMed  CAS  Google Scholar 

  40. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod. 2008;23(12): 2826–34.

    Article  PubMed  Google Scholar 

  41. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–83.

    Article  PubMed  CAS  Google Scholar 

  42. Cox G, Burger J, Lip V, et al. The risk of major birth defects after intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162–4.

    Article  PubMed  CAS  Google Scholar 

  43. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–3.

    Article  PubMed  CAS  Google Scholar 

  44. Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maari O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet. 2003;72:571–7.

    Article  PubMed  CAS  Google Scholar 

  45. Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet. 2005;42(4):289–91.

    Article  PubMed  CAS  Google Scholar 

  46. Sutcliffe AG, Peters CJ, Bowdin S, et al. Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum Reprod. 2006;21(4): 1009–11.

    PubMed  CAS  Google Scholar 

  47. Doornbos ME, Maas SM, McDonnell J, Vermeiden JP, Hennekam RC. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum Reprod. 2007;22(9):2476–80.

    Article  PubMed  Google Scholar 

  48. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–60.

    Article  PubMed  CAS  Google Scholar 

  49. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet. 2003;72(5):1338–41.

    Article  PubMed  CAS  Google Scholar 

  50. Maher ER, Brueton LA, Bowdin SC, et al. Beckwith–Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40(1):62–4.

    Article  PubMed  CAS  Google Scholar 

  51. Halliday J, Oke K, Breheny S, Algar E, Amor D. Beckwith–Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet. 2004;75:526–8.

    Article  PubMed  CAS  Google Scholar 

  52. Lidegaard O, Pinborg A, Andersen AN. Imprinting diseases and IVF: Danish National IVF cohort study. Hum Reprod. 2005;20(4):950–4.

    PubMed  Google Scholar 

  53. Kallen B, Finnstrom O, Nygren KG, Olausson PO. In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods. Birth Defects Res A Clin Mol Teratol. 2005;73(3):162–9.

    Article  PubMed  CAS  Google Scholar 

  54. Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilization. Lancet. 2003;361:309–10.

    Article  PubMed  Google Scholar 

  55. Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971; 68(4):820–3.

    Article  PubMed  Google Scholar 

  56. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  57. Greger V, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet. 1994;94(5):491–6.

    PubMed  CAS  Google Scholar 

  58. Barker D. Mothers, babies and health in later life. 2nd ed. Glasgow: Churchill Livingstone; 1998.

    Google Scholar 

  59. Gluckman PD, Lillycrop KA, Vickers MH, et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA. 2007;104(31):12796–800.

    Article  PubMed  CAS  Google Scholar 

  60. Rinaudo PF, Lamb J. Fetal origins of perinatal morbidity and/or adult disease. Semin Reprod Med. 2008;26(5):436–45.

    Article  PubMed  Google Scholar 

  61. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.

    Article  PubMed  Google Scholar 

  62. Barker D, Winter P, Osmond C, Margetts B, Simmonds S. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.

    Article  PubMed  CAS  Google Scholar 

  63. Barker DJ. Coronary heart disease: a disorder of growth. Horm Res. 2003;59 Suppl 1:35–41.

    Article  PubMed  CAS  Google Scholar 

  64. Roseboom TJ, van der Meulen JH, Osmond C, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart. 000;84(6):595–8.

    Article  Google Scholar 

  65. Morley R. Fetal origins of adult disease. Semin Fetal Neonatal Med. 2006;11:73–8.

    Article  PubMed  Google Scholar 

  66. Rich-Edwards JW, Kleinman K, Michels KB, Stampfer MJ, Manson JE, Rexrode KM, et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease stroke in women. BMJ. 2005;330:1115–8.

    Article  PubMed  Google Scholar 

  67. Lawlor D, Ronalds G, Clark H, Smith G, Leon D. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: findings from the Aberdeen children of the 1950s prospective cohort study. Circulation. 2005;112:1414–8.

    Article  PubMed  Google Scholar 

  68. Law C, Shiell A. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens. 1996;14:935–41.

    Article  PubMed  CAS  Google Scholar 

  69. Edwards LJ, McMillen IC. Periconceptional nutrition programs development of the cardiovascular system in the fetal sheep. Am J Physiol. 2002;283(3):R669–79.

    CAS  Google Scholar 

  70. Gardner DS, Pearce S, Dandrea J, et al. Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep. Hypertension. 2004;43(6):1290–6.

    Article  PubMed  CAS  Google Scholar 

  71. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127(19):4195–202.

    PubMed  CAS  Google Scholar 

  72. Morgan HD, Jin XL, Li A, Whitelaw E, O’Neill C. The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod. 2008;79(4):618–23.

    Article  PubMed  CAS  Google Scholar 

  73. Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet. 1994;8(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  74. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(8 Suppl):2393S–400.

    PubMed  CAS  Google Scholar 

  75. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12(11):949–57.

    PubMed  CAS  Google Scholar 

  76. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 2007;104(32):13056–61.

    Article  PubMed  CAS  Google Scholar 

  77. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114(4): 567–72.

    Article  PubMed  CAS  Google Scholar 

  78. Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res. 2008;647(1–2):30–8.

    PubMed  CAS  Google Scholar 

  79. Ho SM, Tang WY. Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases. Reprod Toxicol. 2007;23(3):267–82.

    Article  PubMed  CAS  Google Scholar 

  80. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74(4):599–609.

    Article  PubMed  CAS  Google Scholar 

  81. Wagenaar K, Ceelen M, van Weissenbruch MM, Knol DL, Delemarre-van de Waal HA, Huisman J. School functioning in 8- to 18-year-old children born after in vitro fertilization. Eur J Pediatr. 2008;167(11): 1289–95.

    Article  PubMed  Google Scholar 

  82. Ludwig A, Katalinic A, Thyen U, Sutcliffe AG, Diedrich K, Ludwig M. Neuromotor development and mental health at 5.5 years of age of singletons born at term after intracytoplasmatic sperm injection ICSI: results of a prospective controlled single-blinded study in Germany. Fertil Steril. 2009;91(1): 125–32.

    Article  PubMed  Google Scholar 

  83. Ludwig AK, Katalinic A, Thyen U, Sutcliffe AG, Diedrich K, Ludwig M. Physical health at 5.5 years of age of term-born singletons after intracytoplasmic sperm injection: results of a prospective, controlled, single-blinded study. Fertil Steril. 2009;91(1):115–24.

    Article  PubMed  Google Scholar 

  84. Katari S, Turan N, Bibikova M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18(20):3769–78.

    Article  PubMed  CAS  Google Scholar 

  85. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2009;19(1):36–51.

    Google Scholar 

  86. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet. 2004;13(8): 839–49.

    Article  PubMed  CAS  Google Scholar 

  87. Ariel M, Cedar H, McCarrey J. Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nat Genet. 1994;7(1):59–63.

    Article  PubMed  CAS  Google Scholar 

  88. De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum Reprod. 2002;17(10):2487–94.

    Article  PubMed  Google Scholar 

  89. Grace KS, Sinclair KD. Assisted reproductive ­technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin Reprod Med. 2009;27(5):409–16.

    Article  PubMed  CAS  Google Scholar 

  90. Sato A, Otsu E, Negishi H, Utsunomiya T, Arime T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod. 2007;22:26–35.

    Article  PubMed  CAS  Google Scholar 

  91. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008;136(6):703–15.

    Article  PubMed  CAS  Google Scholar 

  92. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.

    Article  PubMed  CAS  Google Scholar 

  93. Siristatidis CS, Maheshwari A, Bhattacharya S. In vitro maturation in sub fertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev. 2009(1):CD006606.

    Google Scholar 

  94. Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110(4):885–91.

    Article  PubMed  Google Scholar 

  95. Wang N, Le F, Zhan QT, et al. Effects of in vitro maturation on histone acetylation in metaphase II oocytes and early cleavage embryos. Obstet Gynecol Int. 2010;2010:989278.

    PubMed  Google Scholar 

  96. Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21): 2542–51.

    Article  PubMed  CAS  Google Scholar 

  97. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.

    Article  PubMed  CAS  Google Scholar 

  98. Zech H, Vanderzwalmen P, Prapas Y, Lejeune B, Duba E, Schoysman R. Congenital malformations after intracytoplasmic injection of spermatids. Hum Reprod. 2000;15(4):969–71.

    Article  PubMed  CAS  Google Scholar 

  99. Wilmut I, Sales DI. Effect of an asynchronous environment on embryonic development in sheep. J Reprod Fertil. 1981;61(1):179–84.

    PubMed  CAS  Google Scholar 

  100. Maxfield EK, Sinclair KD, Dunne LD, et al. Temporary exposure of ovine embryos to an advanced uterine environment does not affect fetal weight but alters fetal muscle development. Biol Reprod. 1998;59(2):321–5.

    Article  PubMed  CAS  Google Scholar 

  101. Rupp RA, Singhal N, Veenstra GJ. When the embryonic genome flexes its muscles. Eur J Biochem. 2002;269(9):2294–9.

    Article  PubMed  CAS  Google Scholar 

  102. Markoulaki S, Kurokawa M, Yoon SY, Matson S, Ducibella T, Fissore R. Comparison of Ca2+ and CaMKII responses in IVF and ICSI in the mouse. Mol Hum Reprod. 2007;13(4):265–72.

    Article  PubMed  CAS  Google Scholar 

  103. Kurokawa M, Fissore RA. ICSI-generated mouse zygotes exhibit altered calcium oscillations, inositol 1, 4, 5-trisphosphate receptor-1 down-regulation, and embryo development. Mol Hum Reprod. 2003;9(9):523–33.

    Article  PubMed  CAS  Google Scholar 

  104. Orstavik KH, Eiklid K, van der Hagen CB, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet. 2003;72(1):218–9.

    Article  PubMed  CAS  Google Scholar 

  105. Santos F, Hyslop L, Stojkovic P, et al. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod. 2010;25(9):2387–95.

    Article  PubMed  CAS  Google Scholar 

  106. Rinaudo P, Schultz R. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction. 2004;128:301–11.

    Article  PubMed  CAS  Google Scholar 

  107. Giritharan G, Talbi S, Donjacour A, Di Sebastiano F, Dobson AT, Rinaudo PF. Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction. 2007;134(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  108. Rinaudo P, Giritharan G, Talbi S, Dobson A, Schultz R. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86 Suppl 4:1252–65.

    PubMed  CAS  Google Scholar 

  109. Delle Piane L, Lin W, Liu X, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25(8):2039–46.

    Article  PubMed  CAS  Google Scholar 

  110. Ecker DJ, Stein P, Xu Z, et al. Long-term effects of culture of preimplantation mouse embryos on ­behavior. Proc Natl Acad Sci USA. 2004;101(6):1595–600.

    Article  PubMed  CAS  Google Scholar 

  111. Fernandez-Gonzalez R, Moreira P, Bilbao A, et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci USA. 2004;101(16):5880–5.

    Article  PubMed  CAS  Google Scholar 

  112. Dugan KJ, Shalika S, Smith RD, Padilla SL. Comparison of synthetic serum substitute and fetal cord serum as media supplements for in vitro fertilization: a prospective, randomized study. Fertil Steril. 1997;67(1):166–8.

    Article  PubMed  CAS  Google Scholar 

  113. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6):1526–35.

    Article  PubMed  CAS  Google Scholar 

  114. Li T, Vu TH, Ulaner GA, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod. 2005;11(9):631–40.

    Article  PubMed  CAS  Google Scholar 

  115. Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev. 2002;63(3):329–34.

    Article  PubMed  CAS  Google Scholar 

  116. Sinclair KD, Young LE, Wilmut I, McEvoy TG. In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Hum Reprod. 2000;15 Suppl 5:68–86.

    PubMed  Google Scholar 

  117. Walker SK, Hartwich KM, Robinson JS. Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Hum Reprod Update. 2000;6(6):564–77.

    Article  PubMed  CAS  Google Scholar 

  118. Hiendleder S, Mund C, Reichenbach HD, et al. Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques. Biol Reprod. 2004;71(1):217–23.

    Article  PubMed  CAS  Google Scholar 

  119. Hiendleder S, Wirtz M, Mund C, et al. Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses. Biol Reprod. 2006;75(1): 17–23.

    Article  PubMed  CAS  Google Scholar 

  120. Young L, Fernandes K, McEvoy T, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27: 153–4.

    Article  PubMed  CAS  Google Scholar 

  121. Yan LY, Yan J, Qiao J, Zhao PL, Liu P. Effects of oocyte vitrification on histone modifications. Reprod Fertil Dev. 2010;22(6):920–5.

    Article  PubMed  CAS  Google Scholar 

  122. Yokochi T, Robertson KD. Dimethyl sulfoxide stimulates the catalytic activity of de novo DNA methyltransferase 3a (Dnmt3a) in vitro. Bioorg Chem. 2004;32(4):234–43.

    Article  PubMed  CAS  Google Scholar 

  123. Wennerholm UB, Soderstrom-Anttila V, Bergh C, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24(9):2158–72.

    Article  PubMed  Google Scholar 

  124. NIH. 2009. http://report.nih.gov/rcdc/categories/Default.aspx.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by NICHD grant R01 HD 062803 - 01 A1 to PFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo F. Rinaudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herndon, C.N., Rinaudo, P.F. (2011). ART and Epigenetic Disorders: Should We Be Concerned?. In: Racowsky, C., Schlegel, P., Fauser, B., Carrell, D. (eds) Biennial Review of Infertility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8456-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8456-2_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8455-5

  • Online ISBN: 978-1-4419-8456-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics