Skip to main content

The Emerging Role of the Sperm Epigenome and its Potential Role in Development

  • Chapter
  • First Online:
Biennial Review of Infertility
  • 659 Accesses

Abstract

The sperm genome has traditionally been thought to lack chromatin structure significant to affect embryonic development, since during spermatogenesis nucleosomes are widely replaced by protamines, which are believed to silence the genome, and the sperm DNA was known to be hypermethylated in comparison to the egg. The notion of an irrelevant sperm epigenome has been widely challenged due to many recent reports that suggest that sperm chromatin is actually poised similar to an embryonic stem cell, a finding that has been reported in the germline of many organisms. The significance of the mature sperm cellular epigenome is unknown; however, one may foresee two potential roles: either a role in developing embryo or a reminiscent memory of the spermatogonial stem cell with no significance beyond ensuring proper sperm differentiation and maturation. If these marks do help guide the embryo, then perturbations to the epigenome may have implications on embryo quality, likelihood of maintaining a pregnancy, or disease onset later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  2. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25(3):338–42.

    PubMed  CAS  Google Scholar 

  3. Lister R, O’Malley RC, Tonti-Filippini J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–36.

    Article  PubMed  CAS  Google Scholar 

  4. Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.

    Article  PubMed  CAS  Google Scholar 

  5. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

    Article  PubMed  CAS  Google Scholar 

  6. Feng S, Cokus SJ, Zhang X, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA. 2010;107(19):8689–94.

    Article  PubMed  CAS  Google Scholar 

  7. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.

    Article  PubMed  CAS  Google Scholar 

  8. Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code? Curr Opin Genet Dev. 2005;15(2):163–76.

    Article  PubMed  CAS  Google Scholar 

  9. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  10. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.

    Article  PubMed  CAS  Google Scholar 

  11. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  13. Lomba A, Milagro FI, Garcia-Diaz DF, Marti A, Campion J, Martinez JA. Obesity induced by a pair-fed high fat sucrose diet: methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis. 2010;9(1):60.

    Article  PubMed  CAS  Google Scholar 

  14. Boissonnas CC, Abdalaoui HE, Haelewyn V, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  15. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2009;94(5):1728–33.

    PubMed  Google Scholar 

  16. Kobayashi H, Sato A, Otsu E, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.

    Article  PubMed  CAS  Google Scholar 

  17. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.

    Article  PubMed  CAS  Google Scholar 

  18. Marques CJ, Costa P, Vaz B, et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.

    PubMed  CAS  Google Scholar 

  19. Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A, Sousa M. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril. 2010;94(2):585–94.

    Article  PubMed  CAS  Google Scholar 

  20. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–15.

    Article  PubMed  CAS  Google Scholar 

  21. Owen CM, Segars Jr JH. Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2009;27(5):417–28.

    Article  PubMed  CAS  Google Scholar 

  22. Lawrence LT, Moley KH. Epigenetics and assisted reproductive technologies: human imprinting syndromes. Semin Reprod Med. 2008;26(2):143–52.

    Article  PubMed  CAS  Google Scholar 

  23. Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod. 1998;3(3):155–63.

    Article  PubMed  CAS  Google Scholar 

  24. Bliek J, Verde G, Callaway J, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome. Eur J Hum Genet. 2009;17(5):611–9.

    Article  PubMed  CAS  Google Scholar 

  25. Weksberg R, Shuman C, Beckwith JB. Beckwith–Wiedemann syndrome. Eur J Hum Genet. 2010;18(1):8–14.

    Article  PubMed  Google Scholar 

  26. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.

    Article  PubMed  CAS  Google Scholar 

  27. Reik W, Santos F, Mitsuya K, Morgan H, Dean W. Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos Trans R Soc Lond B Biol Sci. 2003;358(1436):1403–9. discussion 1409.

    PubMed  CAS  Google Scholar 

  28. Reik W, Santos F, Dean W. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology. 2003;59(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  29. Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 1997;17(3):275–6.

    Article  PubMed  CAS  Google Scholar 

  30. Lane N, Dean W, Erhardt S, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35(2):88–93.

    Article  PubMed  CAS  Google Scholar 

  31. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol. 2005;278:440–5.

    Article  PubMed  CAS  Google Scholar 

  32. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.

    Article  PubMed  CAS  Google Scholar 

  33. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell. 2010;18(3):371–84.

    Article  PubMed  CAS  Google Scholar 

  34. Li L, Halaby MJ, Hakem A, et al. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J Exp Med. 2010;207(5):983–97.

    Article  PubMed  CAS  Google Scholar 

  35. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844–7.

    Article  PubMed  CAS  Google Scholar 

  36. Dion MF, Altschuler SJ, Wu LF, Rando OJ. Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA. 2005;102(15):5501–6.

    Article  PubMed  CAS  Google Scholar 

  37. Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev. 1992;31(3):170–81.

    Article  PubMed  CAS  Google Scholar 

  38. Nair M, Nagamori I, Sun P, et al. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320(2):446–55.

    Article  PubMed  CAS  Google Scholar 

  39. Hazzouri M, Pivot-Pajot C, Faure A, et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 2000;79:950–60.

    Article  PubMed  CAS  Google Scholar 

  40. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–90.

    Article  PubMed  CAS  Google Scholar 

  41. McGraw S, Morin G, Vigneault C, Leclerc P, Sirard MA. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC Dev Biol. 2007;7:123.

    Article  PubMed  CAS  Google Scholar 

  42. Lahn BT, Tang ZL, Zhou J, et al. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci USA. 2002;99(13):8707–12.

    Article  PubMed  CAS  Google Scholar 

  43. Fenic I, Sonnack V, Failing K, Bergmann M, Steger K. In vivo effects of histone-deacetylase inhibitor trichostatin-A on murine spermatogenesis. J Androl. 2004;25(5):811–8.

    PubMed  CAS  Google Scholar 

  44. Fenic I, Hossain HM, Sonnack V, et al. In vivo application of histone deacetylase inhibitor trichostatin-a impairs murine male meiosis. J Androl. 2008;29(2):172–85.

    PubMed  CAS  Google Scholar 

  45. Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 2003;23(15):5354–65.

    Article  PubMed  CAS  Google Scholar 

  46. Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-­bromodomain-containing proteins, is essential for male germ cell differentiation. Development. 2007;134(19):3507–15.

    Article  PubMed  CAS  Google Scholar 

  47. Moriniere J, Rousseaux S, Steuerwald U, et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature. 2009;461(7264):664–8.

    Article  PubMed  CAS  Google Scholar 

  48. Krawetz SA, Dixon GH. Sequence similarities of the protamine genes: implications for regulation and evolution. J Mol Evol. 1988;27(4):291–7.

    Article  PubMed  CAS  Google Scholar 

  49. Balhorn R, The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    Google Scholar 

  50. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27.

    Article  PubMed  CAS  Google Scholar 

  51. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    PubMed  CAS  Google Scholar 

  52. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  CAS  Google Scholar 

  54. Zini A, Gabriel MS, Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril. 2007;87(1):217–9.

    Article  PubMed  Google Scholar 

  55. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.

    Article  PubMed  CAS  Google Scholar 

  56. Aoki VW, Liu L, Jones KP, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–15.

    Article  PubMed  CAS  Google Scholar 

  57. de Yebra L, Ballesca JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–9.

    Article  PubMed  Google Scholar 

  58. Chevaillier P, Mauro N, Feneux D, Jouannet P, David G. Anomalous protein complement of sperm nuclei in some infertile men. Lancet. 1987;2(8562):806–7.

    Article  PubMed  CAS  Google Scholar 

  59. Cho C, Willis WD, Goulding EH, et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet. 2001;28(1):82–6.

    PubMed  CAS  Google Scholar 

  60. Zhao M, Shirley CR, Hayashi S, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 2004;38(4):200–13.

    Article  PubMed  CAS  Google Scholar 

  61. Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004;71(4):1220–9.

    Article  PubMed  CAS  Google Scholar 

  62. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3):313–27.

    Article  PubMed  CAS  Google Scholar 

  63. Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl. 2008;31(6):537–45.

    Article  PubMed  Google Scholar 

  64. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;236(4804):962–4.

    Article  PubMed  CAS  Google Scholar 

  65. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265(33):20662–6.

    PubMed  CAS  Google Scholar 

  66. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278(32):29471–7.

    Article  PubMed  CAS  Google Scholar 

  67. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434(7033):583–9.

    Article  PubMed  CAS  Google Scholar 

  68. Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol. 1998;18(6):3350–6.

    PubMed  CAS  Google Scholar 

  69. Brykczynska U, Hisano M, Erkek S, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87.

    Article  PubMed  CAS  Google Scholar 

  70. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    PubMed  CAS  Google Scholar 

  71. Arpanahi A, Brinkworth M, Iles D, et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19(8):1338–49.

    Article  PubMed  CAS  Google Scholar 

  72. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  73. Vastenhouw NL, Zhang Y, Woods IG, et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature. 2010;464(7290):922–6.

    Article  PubMed  CAS  Google Scholar 

  74. Bird A, Macleod D. Reading the DNA methylation signal. Cold Spring Harb Symp Quant Biol. 2004;69:113–8.

    Article  PubMed  CAS  Google Scholar 

  75. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24(1):88–91.

    PubMed  CAS  Google Scholar 

  76. Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25(3):269–77.

    Article  PubMed  CAS  Google Scholar 

  77. Eden S, Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994;4(2):255–9.

    Article  PubMed  CAS  Google Scholar 

  78. Farthing CR, Ficz G, Ng RK, et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 2008;4(6):e1000116.

    Article  PubMed  CAS  Google Scholar 

  79. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.

    Article  PubMed  CAS  Google Scholar 

  80. Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci USA. 2007;104(1):228–33.

    Article  PubMed  CAS  Google Scholar 

  81. Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378–85.

    Article  PubMed  CAS  Google Scholar 

  82. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30(6):755–66.

    Article  PubMed  CAS  Google Scholar 

  83. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.

    Article  PubMed  CAS  Google Scholar 

  84. Down TA, Rakyan VK, Turner DJ, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.

    Article  PubMed  CAS  Google Scholar 

  85. Ferguson-Smith AC, Surani MA. Imprinting and the epigenetic asymmetry between parental genomes. Science. 2001;293(5532):1086–9.

    Article  PubMed  CAS  Google Scholar 

  86. Reik W, Walter J. Genomic imprinting: parental ­influence on the genome. Nat Rev Genet. 2001;2(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  87. Allen ND, Norris ML, Surani MA. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell. 1990;61(5):853–61.

    Article  PubMed  CAS  Google Scholar 

  88. Ferguson-Smith AC. Genetic imprinting: silencing elements have their say. Curr Biol. 2000;10(23):R872–5.

    Article  PubMed  CAS  Google Scholar 

  89. Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development, and disease. J Pathol. 2001;195(1):97–110.

    Article  PubMed  CAS  Google Scholar 

  90. Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–7.

    Article  PubMed  Google Scholar 

  91. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–60.

    Article  PubMed  CAS  Google Scholar 

  92. Niemitz EL, DeBaun MR, Fallon J, et al. Microdeletion of LIT1 in familial Beckwith–Wiedemann syndrome. Am J Hum Genet. 2004;75(5):844–9.

    Article  PubMed  CAS  Google Scholar 

  93. Cox GF, Burger J, Lip V, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71(1):162–4.

    Article  PubMed  CAS  Google Scholar 

  94. Fernandez-Gonzalez R, Moreira P, Bilbao A, et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci USA. 2004;101(16):5880–5.

    Article  PubMed  CAS  Google Scholar 

  95. Lazzari G, Wrenzycki C, Herrmann D, et al. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002;67(3):767–75.

    Article  PubMed  CAS  Google Scholar 

  96. Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP. Effect of culture environment on embryo quality and gene expression – experience from animal studies. Reprod Biomed Online. 2003;7(6):657–63.

    Article  PubMed  CAS  Google Scholar 

  97. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8.

    PubMed  CAS  Google Scholar 

  98. Rakyan VK, Down TA, Thorne NP, et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008;18(9):1518–29.

    Article  PubMed  CAS  Google Scholar 

  99. Morgan HD, Jin XL, Li A, Whitelaw E, O’Neill C. The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigenetically labile allele, agouti viable yellow, in mice. Biol Reprod. 2008;79(4):618–23.

    Article  PubMed  CAS  Google Scholar 

  100. Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, El-Maarri O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet. 2003;72(3):571–7.

    Article  PubMed  CAS  Google Scholar 

  101. Arima T, Kamikihara T, Hayashida T, et al. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith–Wiedemann syndrome. Nucleic Acids Res. 2005;33(8):2650–60.

    Article  PubMed  CAS  Google Scholar 

  102. Kagami M, Nagai T, Fukami M, Yamazawa K, Ogata T. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J Assist Reprod Genet. 2007;24(4):131–6.

    Article  PubMed  Google Scholar 

  103. Rakyan V, Whitelaw E. Transgenerational epigenetic inheritance. Curr Biol. 2003;13(1):R6.

    Article  PubMed  CAS  Google Scholar 

  104. Rakyan VK, Chong S, Champ ME, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA. 2003;100(5):2538–43.

    Article  PubMed  CAS  Google Scholar 

  105. Blewitt ME, Vickaryous NK, Paldi A, Koseki H, Whitelaw E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. 2006;2(4):e49.

    Article  PubMed  CAS  Google Scholar 

  106. Chan TL, Yuen ST, Kong CK, et al. Heritable ­germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet. 2006;38(10):1178–83.

    Article  PubMed  CAS  Google Scholar 

  107. Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004;36(5):497–501.

    Article  PubMed  CAS  Google Scholar 

  108. Yamazaki Y, Mann MR, Lee SS, et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA. 2003;100(21):12207–12.

    Article  PubMed  CAS  Google Scholar 

  109. Lee J, Inoue K, Ono R, et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development. 2002;129(8):1807–17.

    PubMed  CAS  Google Scholar 

  110. Hajkova P, Ancelin K, Waldmann T, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008;452(7189):877–81.

    Article  PubMed  CAS  Google Scholar 

  111. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117(1–2):15–23.

    Article  PubMed  CAS  Google Scholar 

  112. Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA. 2001;98(24):13734–8.

    Article  PubMed  CAS  Google Scholar 

  113. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403(6769):501–2.

    Article  PubMed  CAS  Google Scholar 

  114. Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.

    Article  PubMed  CAS  Google Scholar 

  115. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9(2):129–40.

    Article  PubMed  CAS  Google Scholar 

  116. Choi Y, Gehring M, Johnson L, et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell. 2002;110(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  117. Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science. 2004;303(5657):521–3.

    Article  PubMed  CAS  Google Scholar 

  118. Jullien PE, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell. 2006;18(6):1360–72.

    Article  PubMed  CAS  Google Scholar 

  119. Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA. 2007;104(16):6752–7.

    Article  PubMed  CAS  Google Scholar 

  120. Hsieh TF, Ibarra CA, Silva P, et al. Genome-wide demethylation of Arabidopsis endosperm. Science. 2009;324(5933):1451–4.

    Article  PubMed  CAS  Google Scholar 

  121. Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet. 2009;25(2):82–90.

    Article  PubMed  CAS  Google Scholar 

  122. Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol. 2007;17(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  123. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999;397(6720):579–83.

    PubMed  CAS  Google Scholar 

  124. Balada E, Ordi-Ros J, Serrano-Acedo S, Martinez-Lostao L, Vilardell-Tarres M. Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol. 2007;81(6):1609–16.

    Article  PubMed  CAS  Google Scholar 

  125. Sedgwick B. Repairing DNA-methylation damage. Nat Rev Mol Cell Biol. 2004;5(2):148–57.

    Article  PubMed  CAS  Google Scholar 

  126. Jin SG, Guo C, Pfeifer GP. GADD45A does not promote DNA demethylation. PLoS Genet. 2008;4(3):e1000013.

    Article  PubMed  CAS  Google Scholar 

  127. Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671–5.

    Article  PubMed  CAS  Google Scholar 

  128. Kangaspeska S, Stride B, Metivier R, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452(7183):112–5.

    Article  PubMed  CAS  Google Scholar 

  129. Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999;401(6750):301–4.

    PubMed  CAS  Google Scholar 

  130. Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J Am Chem Soc. 2006;128(38):12510–9.

    Article  PubMed  CAS  Google Scholar 

  131. Zhu B, Zheng Y, Angliker H, et al. 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res. 2000;28(21):4157–65.

    Article  PubMed  CAS  Google Scholar 

  132. Jost JP, Siegmann M, Sun L, Leung R. Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem. 1995;270(17):9734–9.

    PubMed  CAS  Google Scholar 

  133. Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008;452(7183):45–50.

    Article  PubMed  CAS  Google Scholar 

  134. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008;135(7):1201–12.

    Article  PubMed  CAS  Google Scholar 

  135. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463(7284):1042–7.

    Article  PubMed  CAS  Google Scholar 

  136. Popp C, Dean W, Feng S, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463(7284):1101–5.

    Article  PubMed  CAS  Google Scholar 

  137. Tutt Landolfi MM, Scollay R, Parnes JR. Specific demethylation of the CD4 gene during CD4 T lymphocyte differentiation. Mol Immunol. 1997;34(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  138. Kovtun IV, McMurray CT. Crosstalk of DNA ­glycosylases with pathways other than base excision repair. DNA Repair (Amst). 2007;6(4):517–29.

    Article  CAS  Google Scholar 

  139. Li YQ, Zhou PZ, Zheng XD, Walsh CP, Xu GL. Association of Dnmt3a and thymine DNA ­glycosylase links DNA methylation with base-­excision repair. Nucleic Acids Res. 2007;35(2):390–400.

    PubMed  CAS  Google Scholar 

  140. Boland MJ, Christman JK. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J Mol Biol. 2008;379(3):492–504.

    Article  PubMed  CAS  Google Scholar 

  141. Yamazaki Y, Low EW, Marikawa Y, et al. Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci USA. 2005;102(32):11361–6.

    Article  PubMed  CAS  Google Scholar 

  142. Sato S, Yoshimizu T, Sato E, Matsui Y. Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev. 2003;65(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  143. Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germ line. Adv Exp Med Biol. 2008;626:1–15.

    Article  PubMed  CAS  Google Scholar 

  144. Tam PP, Zhou SX, Tan SS. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development. 1994;120(10):2925–32.

    PubMed  CAS  Google Scholar 

  145. Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990;110(2):521–8.

    PubMed  CAS  Google Scholar 

  146. Kalra SK, Molinaro TA. The association of in vitro fertilization and perinatal morbidity. Semin Reprod Med. 2008;26(5):423–35.

    Article  PubMed  Google Scholar 

  147. Chen XK, Wen SW, Bottomley J, Smith GN, Leader A, Walker MC. In vitro fertilization is associated with an increased risk for preeclampsia. Hypertens Pregnancy. 2009;28(1):1–12.

    Article  PubMed  Google Scholar 

  148. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hammoud, S., Carrell, D.T. (2011). The Emerging Role of the Sperm Epigenome and its Potential Role in Development. In: Racowsky, C., Schlegel, P., Fauser, B., Carrell, D. (eds) Biennial Review of Infertility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8456-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8456-2_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8455-5

  • Online ISBN: 978-1-4419-8456-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics