Skip to main content

Sperm DNA Damage: Causes and Guidelines for Current Clinical Practice

  • Chapter
  • First Online:
Biennial Review of Infertility

Abstract

Infertility is a common health problem affecting approximately 15% of all couples. It is estimated that, in at least 50% of all cases, impairment of semen quality is a factor contributing to the problem of the couple. Furthermore, 10–15% of all infertility cases are “unexplained”. Traditional sperm parameters – concentration, motility, morphology – were shown to have a poor predictive value, both in relation to fertility in vivo and in vitro. Thus, there is an urgent need of finding new sperm quality markers that can be used for the evaluation of the chance of a couple to conceive in a natural way, and also, if necessary, for the selection of the right assisted reproductive technique (ART). In this context, testing of sperm DNA integrity seems to be a potential candidate. The causes of sperm DNA damage are multi-factorial, including testicular and post-testicular, genetic and exposure-related mechanisms. For the assessment of sperm DNA damage, a number of different techniques is available. The results obtained by these methods are generally correlated, but, on the other hand, they seem to measure slightly different elements of sperm DNA integrity and they provide limited information on the nature of the lesions detected. So far, assessment of sperm DNA has proven to be the most powerful in predicting in vivo infertility, which means cases where the chance of pregnancy by natural conception or intrauterine insemination is close to zero. High percentage of sperms with DNA defects seems also to have a negative impact on the results of standard in vitro fertilisation (IVF), but not on that of intracytoplasmatic sperm injection (ICSI), even if the issue is debatable and under active scrutiny. Clinically applicable threshold values have been defined for one of the methods for assessment of sperm DNA integrity – the sperm chromatin structure assay (SCSA) – but not yet for the other techniques. There is a need for standardisation of technology for these assays in the same way as it has been achieved for SCSA. Thus, well-designed studies should be carried out in order to define the clinical role of these new measures of sperm quality. This is important from the diagnostic as well as therapeutic point of view, since a more nuanced characterisation of sperm DNA defects will not only lead to an improved choice of the ART methods, but may also help in developing cause-related therapy of male subfertility. From the biological point of view, it needs to be investigated whether sperm DNA damage transmitted to the embryo by use of IVF and ICSI can be hazardous to the offspring, taking into account the wealth of animal data demonstrating the link between sperm DNA damage and abnormalities in embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonde JPE, Ernst E, Jensen TK, et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998;352:1172–7.

    PubMed  CAS  Google Scholar 

  2. Guzick DS, Overstreet JW, Factor-Litvak P, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345(19):1388–93.

    PubMed  CAS  Google Scholar 

  3. WHO. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  4. WHO. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 1999.

    Google Scholar 

  5. Skakkebaek NE, Giwercman A, de Kretser D. Pathogenesis and management of male infertility. Lancet. 1994;343(8911):1473–9.

    PubMed  CAS  Google Scholar 

  6. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.

    PubMed  CAS  Google Scholar 

  7. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11–29.

    PubMed  CAS  Google Scholar 

  8. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44:569–74.

    PubMed  CAS  Google Scholar 

  9. Fuentes-Mascorro G, Serrano H, Rosado A. Sperm chromatin. Arch Androl. 2000;45(3):215–25.

    PubMed  CAS  Google Scholar 

  10. Ward WS. Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod. 1993;48(6):1193–201.

    PubMed  CAS  Google Scholar 

  11. Solov’eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res. 2004;12(8):817–23.

    PubMed  Google Scholar 

  12. Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma. 1995;103(9):577–90.

    PubMed  CAS  Google Scholar 

  13. Ward WS, Zalensky AO. The unique, complex ­organization of the transcriptionally silent sperm chromatin. Crit Rev Eukaryot Gene Expr. 1996;6(2–3):139–47.

    PubMed  CAS  Google Scholar 

  14. Bench GS, Friz AM, Corzett MH, Morse DH, Balhorn R. DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry. 1996;23(4):263–71.

    PubMed  CAS  Google Scholar 

  15. Lewis JD, Song Y, de Jong ME, Bagha SM, Ausio J. A walk though vertebrate and invertebrate protamines. Chromosoma. 2003;111(8):473–82.

    PubMed  Google Scholar 

  16. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27.

    PubMed  CAS  Google Scholar 

  17. Jager S. Sperm nuclear stability and male infertility. Arch Androl. 1990;25(3):253–9.

    PubMed  CAS  Google Scholar 

  18. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    PubMed  CAS  Google Scholar 

  19. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    PubMed  CAS  Google Scholar 

  20. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.

    PubMed  CAS  Google Scholar 

  21. Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJW. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology. 1995;136:5–12.

    PubMed  CAS  Google Scholar 

  22. Aitken RJ, Baker MA. Oxidative stress and male reproductive biology. Reprod Fertil Dev. 2004;16(5):581–8.

    PubMed  CAS  Google Scholar 

  23. Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl. 1990;13(6):433–51.

    PubMed  CAS  Google Scholar 

  24. De Iuliis GN, Thomson LK, Mitchell LA, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.

    PubMed  Google Scholar 

  25. Stahl O, Eberhard J, Jepson K, et al. The impact of testicular carcinoma and its treatment on sperm DNA integrity. Cancer. 2004;100(6):1137–44.

    PubMed  Google Scholar 

  26. Rubes J, Selevan SG, Evenson DP, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod. 2005;20(10):2776–83.

    PubMed  CAS  Google Scholar 

  27. Spano M, Toft G, Hagmar L, et al. Exposure to PCB and p, p′-DDE in European and Inuit populations: impact on human sperm chromatin integrity. Hum Reprod. 2005;20(12):3488–99.

    PubMed  CAS  Google Scholar 

  28. Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005;20(12):3446–51.

    PubMed  CAS  Google Scholar 

  29. Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2010;34(1):2–13.

    Google Scholar 

  30. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123(1):291–8.

    PubMed  CAS  Google Scholar 

  31. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–61.

    PubMed  CAS  Google Scholar 

  32. Fairbairn DW, Olive PL, O’Neill KL. The comet assay: a comprehensive review. Mutat Res. 1995;339(1):37–59.

    PubMed  CAS  Google Scholar 

  33. Lewis SE, O’Connell M, Stevenson M, Thompson-Cree L, McClure N. An algorithm to predict pregnancy in assisted reproduction. Hum Reprod. 2004;19(6):1385–94.

    PubMed  CAS  Google Scholar 

  34. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.

    PubMed  Google Scholar 

  35. Evenson D, Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. 2000;22(2–3):169–89.

    PubMed  CAS  Google Scholar 

  36. Evenson DP. Flow cytometric analysis of male germ cell quality. Meth Cell Biol. 1990;33:401–10.

    CAS  Google Scholar 

  37. Giwercman A, Richthoff J, Hjollund H, et al. Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril. 2003;80(6):1404–12.

    PubMed  Google Scholar 

  38. Erenpreisa J, Erenpreiss J, Freivalds T, et al. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytom A. 2003;52(1):19–27.

    Google Scholar 

  39. Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J Androl. 2001;22(1):45–53.

    PubMed  CAS  Google Scholar 

  40. Erenpreiss J, Jepson K, Giwercman A, Tsarev I, Erenpreisa J, Spano M. Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod. 2004;19(10):2277–82.

    PubMed  CAS  Google Scholar 

  41. Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.

    PubMed  CAS  Google Scholar 

  42. Shen H, Ong C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med. 2000;28(4):529–36.

    PubMed  CAS  Google Scholar 

  43. Ni ZY, Liu YQ, Shen HM, Chia SE, Ong CN. Does the increase of 8-hydroxydeoxyguanosine lead to poor sperm quality? Mutat Res. 1997;381(1):77–82.

    PubMed  CAS  Google Scholar 

  44. Chen CS, Chao HT, Pan RL, Wei YH. Hydroxyl radical-induced decline in motility and increase in lipid peroxidation and DNA modification in human sperm. Biochem Mol Biol Int. 1997;43(2):291–303.

    PubMed  CAS  Google Scholar 

  45. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE. 2009;4(7):e6446.

    PubMed  Google Scholar 

  46. Sakkas D, Urner F, Bizzaro D, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13 Suppl 4:11–9.

    PubMed  Google Scholar 

  47. Gillan L, Evans G, Maxwell WM. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology. 2005;63(2):445–57.

    PubMed  Google Scholar 

  48. Stronati A, Manicardi GC, Cecati M, et al. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p,p′-DDE in European and Inuit populations. Reproduction. 2006;132(6):949–58.

    PubMed  CAS  Google Scholar 

  49. Perreault SD, Aitken RJ, Baker HW, et al. Integrating new tests of sperm genetic integrity into semen ­analysis: breakout group discussion. Adv Exp Med Biol. 2003;518:253–68.

    PubMed  Google Scholar 

  50. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73(1):43–50.

    PubMed  CAS  Google Scholar 

  51. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    PubMed  CAS  Google Scholar 

  52. Evenson DP, Wixon R. Data analysis of two in vivo fertility studies using Sperm Chromatin Structure Assay-derived DNA fragmentation index vs pregnancy outcome. Fertil Steril. 2008;90(4):1229–31.

    PubMed  Google Scholar 

  53. Loft S, Kold-Jensen T, Hjollund NH, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18(6):1265–72.

    PubMed  CAS  Google Scholar 

  54. Giwercman A, Lindstedt L, Larsson M, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl. 2009;33(1):e221–7.

    PubMed  Google Scholar 

  55. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.

    PubMed  Google Scholar 

  56. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60(6):1069–72.

    PubMed  Google Scholar 

  57. Smit M, Romijn JC, Wildhagen MF, Weber RF, Dohle GR. Sperm chromatin structure is associated with the quality of spermatogenesis in infertile patients. Fertil Steril. 2009;94(5):1748–52.

    PubMed  Google Scholar 

  58. Lewis SE, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis. 2008;23(3):163–70.

    PubMed  CAS  Google Scholar 

  59. Tsarev I, Bungum M, Giwercman A, et al. Evaluation of male fertility potential by toluidine blue test for sperm chromatin structure assessment. Hum Reprod. 2009;24(7):1569–74.

    PubMed  CAS  Google Scholar 

  60. Shen HM, Chia SE, Ong CN. Evaluation of oxidative DNA damage in human sperm and its association with male infertility. J Androl. 1999;20(6):718–23.

    PubMed  CAS  Google Scholar 

  61. Tejada RI, Mitchell JC, Norman A, Marik JJ, Friedman S. A test for the practical evaluation of male fertility by acridine orange (AO) fluorescence. Fertil Steril. 1984;42(1):87–91.

    PubMed  CAS  Google Scholar 

  62. Plastira K, Msaouel P, Angelopoulou R, et al. The effects of age on DNA fragmentation, chromatin packaging and conventional semen parameters in spermatozoa of oligoasthenoteratozoospermic patients. J Assist Reprod Genet. 2007;24(10):437–43.

    PubMed  Google Scholar 

  63. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.

    PubMed  CAS  Google Scholar 

  64. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    PubMed  CAS  Google Scholar 

  65. Liu CH, Tsao HM, Cheng TC, et al. DNA fragmentation, mitochondrial dysfunction and chromosomal aneuploidy in the spermatozoa of oligoasthenoteratozoospermic males. J Assist Reprod Genet. 2004;21(4):119–26.

    PubMed  CAS  Google Scholar 

  66. Host E, Lindenberg S, Kahn J, Christensen F. DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples. Acta Obstet Gynecol Scand. 1999;78(4):336–9.

    PubMed  CAS  Google Scholar 

  67. Tomlinson M, Turner J, Powell G, Sakkas D. One-step disposable chambers for sperm concentration and motility assessment: how do they compare with the World Health Organization’s recommended methods? Hum Reprod. 2001;16(1):121–4.

    PubMed  CAS  Google Scholar 

  68. Erenpreiss J, Elzanaty S, Giwercman A. Sperm DNA damage in men from infertile couples. Asian J Androl. 2008;10(5):786–90.

    PubMed  Google Scholar 

  69. Boe-Hansen GB, Fedder J, Ersboll AK, Christensen P. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum Reprod. 2006;21(6):1576–82.

    PubMed  Google Scholar 

  70. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (scsa(R)) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.

    PubMed  Google Scholar 

  71. Saleh RA, Agarwal A, Nelson DR, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313–8.

    PubMed  Google Scholar 

  72. Fernandez JL, Muriel L, Goyanes V, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.

    PubMed  CAS  Google Scholar 

  73. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.

    PubMed  CAS  Google Scholar 

  74. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17(12):3122–8.

    PubMed  CAS  Google Scholar 

  75. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas Jr AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80(6):1431–6.

    PubMed  Google Scholar 

  76. Bungum M, Humaidan P, Axmon A, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    PubMed  CAS  Google Scholar 

  77. Muriel L, Meseguer M, Fernandez JL, et al. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod. 2006;21(3):738–44.

    PubMed  Google Scholar 

  78. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80(4):895–902.

    PubMed  Google Scholar 

  79. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15(8):1717–22.

    PubMed  CAS  Google Scholar 

  80. Gandini L, Lombardo F, Paoli D, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19(6):1409–17.

    PubMed  CAS  Google Scholar 

  81. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19(6):1401–8.

    PubMed  CAS  Google Scholar 

  82. Host E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand. 2000;79(7):559–63.

    PubMed  CAS  Google Scholar 

  83. Hammadeh ME, Stieber M, Haidl G, Schmidt W. Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia. 1998;30(1):29–35.

    PubMed  CAS  Google Scholar 

  84. Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, Lewis SE. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod. 2010;25(7):1594–608.

    PubMed  CAS  Google Scholar 

  85. Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84(2):356–64.

    PubMed  Google Scholar 

  86. Ahmadi A, Ng SC. Fertilizing capacity of DNA damaged spermatozoa. J Exp Zool. 1999;286:696–704.

    Google Scholar 

  87. Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;13(7):1864–71.

    PubMed  CAS  Google Scholar 

  88. Sakkas D, Urner F, Bianchi PG, et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod. 1996;11(4):837–43.

    PubMed  CAS  Google Scholar 

  89. Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod. 2001;16(10):2160–5.

    PubMed  CAS  Google Scholar 

  90. Hammadeh ME, Al-Hasani S, Gauss C, et al. Predictive value of chromatin decondensation in vitro on fertilization rate after intracytoplasmic sperm injection (ICSI). Int J Androl. 2001;24(5):311–6.

    PubMed  CAS  Google Scholar 

  91. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and ­correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69(3):528–32.

    PubMed  CAS  Google Scholar 

  92. Sun JG et al. Detection of deoxyribomucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.

    PubMed  CAS  Google Scholar 

  93. Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod. 2002;17(4):990–8.

    PubMed  CAS  Google Scholar 

  94. Spano M, Seli E, Bizzaro D, Manicardi GC, Sakkas D. The significance of sperm nuclear DNA strand breaks on reproductive outcome. Curr Opin Obstet Gynecol. 2005;17(3):255–60.

    PubMed  Google Scholar 

  95. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83.

    PubMed  Google Scholar 

  96. Keel BA. Within- and between-subject variation in semen parameters in infertile men and normal semen donors. Fertil Steril. 2006;85(1):128–34.

    PubMed  Google Scholar 

  97. Neuwinger J, Behre HM, Nieschlag E. External quality control in the andrology laboratory: an experimental multicenter trial. Fertil Steril. 1990;54(2):308–14.

    PubMed  CAS  Google Scholar 

  98. Cooper TG, Neuwinger J, Bahrs S, Nieschlag E. Internal quality control of semen analysis. Fertil Steril. 1992;58(1):172–8.

    PubMed  CAS  Google Scholar 

  99. Erenpreiss J, Bungum M, Spano M, Elzanaty S, Orbidans J, Giwercman A. Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod. 2006;21(8):2061–4.

    PubMed  CAS  Google Scholar 

  100. Spano M, Kolstad AH, Larsen SB, et al. The applicability of the flow cytometric sperm chromatin structure assay as diagnostic and prognostic tool in then human fertility clinic. Hum Reprod. 1998;13:2495–505.

    PubMed  CAS  Google Scholar 

  101. Evenson DP, Jost LK, Baer RK, Turner TW, Schrader SM. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol. 1991;5(2):115–25.

    PubMed  CAS  Google Scholar 

  102. Sergerie M, Mieusset R, Daudin M, Thonneau P, Bujan L. Ten-year variation in semen parameters and sperm deoxyribonucleic acid integrity in a healthy fertile man. Fertil Steril. 2006;86(5):1513.e11–8.

    Google Scholar 

  103. Sergerie M, Laforest G, Boulanger K, Bissonnette F, Bleau G. Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay. Hum Reprod. 2005;20(7):1921–7.

    PubMed  CAS  Google Scholar 

  104. Rignell-Hydbom A, Rylander L, Giwercman A, et al. Exposure to PCBs and p, p′-DDE and human sperm chromatin integrity. Environ Health Perspect. 2005;113(2):175–9.

    PubMed  CAS  Google Scholar 

  105. Hauser R, Meeker JD, Singh NP, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod. 2007;22(3):688–95.

    PubMed  CAS  Google Scholar 

  106. de Jager C, Aneck-Hahn NH, Bornman MS, et al. Sperm chromatin integrity in DDT-exposed young men living in a malaria area in the Limpopo Province, South Africa. Hum Reprod. 2009;24(10):2429–38.

    PubMed  Google Scholar 

  107. Perez-Herrera N, Polanco-Minaya H, Salazar-Arredondo E, et al. PON1Q192R genetic polymorphism modifies organophosphorous pesticide effects on semen quality and DNA integrity in agricultural workers from southern Mexico. Toxicol Appl Pharmacol. 2008;230(2):261–8.

    PubMed  CAS  Google Scholar 

  108. Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res. 2007;625(1–2):20–8.

    PubMed  CAS  Google Scholar 

  109. Giwercman A, Rylander L, Rignell-Hydbom A, et al. Androgen receptor gene CAG repeat length as a modifier of the association between persistent organohalogen pollutant exposure markers and semen characteristics. Pharmacogenet Genomics. 2007;17(6):391–401.

    PubMed  CAS  Google Scholar 

  110. Stahl O, Eberhard J, Cavallin-Stahl E, et al. Sperm DNA integrity in cancer patients: the effect of disease and treatment. Int J Androl. 2008;32(6):695–703.

    PubMed  Google Scholar 

  111. Romerius P, Stahl O, Moell C, et al. Sperm DNA integrity in men treated for childhood cancer. Clin Cancer Res. 2010;16(15):3843–50.

    PubMed  Google Scholar 

  112. Stahl O, Eberhard J, Jepson K, et al. Sperm DNA integrity in testicular cancer patients. Hum Reprod. 2006;21(12):3199–205.

    PubMed  CAS  Google Scholar 

  113. Gandini L, Lombardo F, Lenzi A, Spano M, Dondero F. Cryopreservation and sperm DNA integrity. Cell Tissue Bank. 2006;7(2):91–8.

    PubMed  CAS  Google Scholar 

  114. Practice Committee of American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing. Fertil Steril. 2008;90(5 Suppl):S178–80.

    Google Scholar 

  115. Barratt CL, Aitken RJ, Bjorndahl L, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod. 2010;25(4):824–38.

    PubMed  Google Scholar 

  116. Schmid TE, Eskenazi B, Baumgartner A, et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod. 2007;22(1):180–7.

    PubMed  CAS  Google Scholar 

  117. O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod. 2008;23(5):1044–52.

    PubMed  Google Scholar 

  118. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006;27(1):53–9.

    PubMed  CAS  Google Scholar 

  119. Smith R, Kaune H, Parodi D, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21(4):986–93.

    PubMed  CAS  Google Scholar 

  120. Apedaile AE, Garrett C, Liu DY, Clarke GN, Johnston SA, Baker HW. Flow cytometry and ­microscopic acridine orange test: relationship with standard semen analysis. Reprod Biomed Online. 2004;8(4):398–407.

    PubMed  Google Scholar 

  121. Dominguez-Fandos D, Camejo MI, Ballesca JL, Oliva R. Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytom A. 2007;71(12):1011–8.

    Google Scholar 

  122. Cohen-Bacrie P, Belloc S, Menezo YJ, Clement P, Hamidi J, Benkhalifa M. Correlation between DNA damage and sperm parameters: a prospective study of 1, 633 patients. Fertil Steril. 2009;91(5):1801–5.

    PubMed  Google Scholar 

  123. Bian Q, Xu LC, Wang SL, et al. Study on the relation between occupational fenvalerate exposure and spermatozoa DNA damage of pesticide factory workers. Occup Environ Med. 2004;61(12):999–1005.

    PubMed  CAS  Google Scholar 

  124. Tarozzi N, Nadalini M, Stronati A, et al. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18(4):486–95.

    PubMed  Google Scholar 

  125. Zhang LH, Qiu Y, Wang KH, Wang Q, Tao G, Wang LG. Measurement of sperm DNA fragmentation using bright-field microscopy: comparison between sperm chromatin dispersion test and terminal uridine nick-end labeling assay. Fertil Steril. 2010;94(3):1027–32.

    PubMed  CAS  Google Scholar 

  126. Tavalaee M, Razavi S, Nasr-Esfahani MH. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril. 2009;91(4):1119–26.

    PubMed  CAS  Google Scholar 

  127. Richthoff J, Spano M, Giwercman YL, et al. The impact of testicular and accessory sex gland function on sperm chromatin integrity as assessed by sperm chromatin structure assay (SCSA). Hum Reprod. 2002;17:3162–9.

    PubMed  CAS  Google Scholar 

  128. Hammiche F, Laven J, Boxmeer J, Dohle G, Steegers E, Steegers-Theunissen R. Semen quality decline among men below 60 years of age undergoing IVF or ICSI treatment. J Androl. 2010;32(1):70–6.

    PubMed  Google Scholar 

  129. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Francois Guerin J. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87(1):93–100.

    PubMed  CAS  Google Scholar 

  130. Henkel R, Kierspel E, Hajimohammad M, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7(4):477–84.

    PubMed  Google Scholar 

  131. Henkel R, Hajimohammad M, Stalf T, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81(4):965–72.

    PubMed  CAS  Google Scholar 

  132. Trisini AT, Singh NP, Duty SM, Hauser R. Relationship between human semen parameters and deoxyribonucleic acid damage assessed by the neutral comet assay. Fertil Steril. 2004;82(6):1623–32.

    PubMed  Google Scholar 

  133. de la Calle JF Velez, Muller A, Walschaerts M, et al. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90(5):1792–9.

    Google Scholar 

  134. Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J. Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl. 2002;23(5):717–23.

    PubMed  Google Scholar 

  135. Fischer MA, Willis J, Zini A. Human sperm DNA integrity: correlation with sperm cytoplasmic droplets. Urology. 2003;61(1):207–11.

    PubMed  Google Scholar 

  136. Pant N, Shukla M, Kumar Patel D, et al. Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol. 2008;231(1):112–6.

    PubMed  CAS  Google Scholar 

  137. Gandini L, Lombardo F, Paoli D, et al. Study of apoptotic DNA fragmentation in human spermatozoa. Hum Reprod. 2000;15:830–9.

    PubMed  CAS  Google Scholar 

  138. Hsu PC, Chen IY, Pan CH, et al. Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. Int Arch Occup Environ Health. 2006;79(5):349–56.

    PubMed  CAS  Google Scholar 

  139. Ji G, Gu A, Zhu P, et al. Joint effects of XRCC1 polymorphisms and polycyclic aromatic hydrocarbons exposure on sperm DNA damage and male infertility. Toxicol Sci. 2010;116(1):92–8.

    PubMed  CAS  Google Scholar 

  140. Selevan SG, Borkovec L, Slott VL, et al. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ Health Perspect. 2000;108(9):887–94.

    PubMed  CAS  Google Scholar 

  141. Kolstad HA, Bonde JP, Spano M, et al. Change in semen quality and sperm chromatin structure following occupational styrene exposure. ASCLEPIOS. Int Arch Occup Environ Health. 1999;72(3):135–41.

    PubMed  CAS  Google Scholar 

  142. Migliore L, Naccarati A, Zanello A, Scarpato R, Bramanti L, Mariani M. Assessment of sperm DNA integrity in workers exposed to styrene. Hum Reprod. 2002;17(11):2912–8.

    PubMed  CAS  Google Scholar 

  143. Duty SM, Singh NP, Silva MJ, et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect. 2003;111(9):1164–9.

    PubMed  CAS  Google Scholar 

  144. Jonsson BA, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology. 2005;16(4):487–93.

    PubMed  Google Scholar 

  145. Xu DX, Zhu QX, Zheng LK, et al. Exposure to acrylonitrile induced DNA strand breakage and sex chromosome aneuploidy in human spermatozoa. Mutat Res. 2003;537(1):93–100.

    PubMed  CAS  Google Scholar 

  146. Hauser R, Singh NP, Chen Z, Pothier L, Altshul L. Lack of an association between environmental exposure to polychlorinated biphenyls and p, p′-DDE and DNA damage in human sperm measured using the neutral comet assay. Hum Reprod. 2003;18(12):2525–33.

    PubMed  CAS  Google Scholar 

  147. De Jager C, Farias P, Barraza-Villarreal A, et al. Reduced seminal parameters associated with environmental DDT exposure and p,p′-DDE concentrations in men in Chiapas, Mexico: a cross-sectional study. J Androl. 2006;27(1):16–27.

    PubMed  Google Scholar 

  148. Larsen SB, Giwercman A, Spano M, Bonde JP. A longitudinal study of semen quality in pesticide spraying Danish farmers. The ASCLEPIOS Study Group. Reproduct Toxicol. 1998;12(6):581–9.

    CAS  Google Scholar 

  149. Sanchez-Pena LC, Reyes BE, Lopez-Carrillo L, et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol. 2004;196(1):108–13.

    PubMed  CAS  Google Scholar 

  150. Meeker JD, Singh NP, Ryan L, et al. Urinary levels of insecticide metabolites and DNA damage in human sperm. Hum Reprod. 2004;19(11):2573–80.

    PubMed  CAS  Google Scholar 

  151. Meeker JD, Barr DB, Hauser R. Human semen quality and sperm DNA damage in relation to urinary metabolites of pyrethroid insecticides. Hum Reprod. 2008;23(8):1932–40.

    PubMed  CAS  Google Scholar 

  152. Xia Y, Cheng S, Bian Q, et al. Genotoxic effects on spermatozoa of carbaryl-exposed workers. Toxicol Sci. 2005;85(1):615–23.

    PubMed  CAS  Google Scholar 

  153. Bonde JP, Joffe M, Apostoli P, et al. Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels. Occup Environ Med. 2002;59(4):234–42.

    PubMed  CAS  Google Scholar 

  154. Hernandez-Ochoa I, Garcia-Vargas G, Lopez-Carrillo L, et al. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol. 2005;20(2):221–8.

    PubMed  CAS  Google Scholar 

  155. Hsu PC, Chang HY, Guo YL, Liu YC, Shih TS. Effect of smoking on blood lead levels in workers and role of reactive oxygen species in lead-induced sperm chromatin DNA damage. Fertil Steril. 2009;91(4):1096–103.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Giwercman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giwercman, A., Spanò, M., Bungum, M. (2011). Sperm DNA Damage: Causes and Guidelines for Current Clinical Practice. In: Racowsky, C., Schlegel, P., Fauser, B., Carrell, D. (eds) Biennial Review of Infertility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8456-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8456-2_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8455-5

  • Online ISBN: 978-1-4419-8456-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics