Skip to main content

MRI of Cartilage: Standard Techniques

  • Chapter
  • First Online:
Cartilage Imaging

Abstract

Magnetic resonance imaging (MRI) is the only imaging technique that allows direct visualization of cartilage with sufficient contrast. However, cartilage imaging is challenging and MRI needs to be tailored to best visualize cartilage morphology, which includes using scanners with adequate field strength, coils which allow high spatial resolution imaging, and optimized imaging sequences. Also MRI should not only allow to assess cartilage morphology but also abnormalities of tissues which are affected by cartilage damage or which may cause accelerated cartilage loss including abnormalities of the menisci, ligaments, and bone marrow. Among these tissues cartilage clearly has an outstanding role in joint degeneration and osteoarthritis; imaging is also most challenging in terms of required signal-to-noise ratio (SNR), spatial resolution, and contrast. Requirements for cartilage imaging therefore dictate overall requirements in terms of hardware and sequence profiles in degenerative joint disease, injury, and inflammatory arthropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kladny B, Gluckert K, Swoboda B, Beyer W, Weseloh G. Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch Orthop Trauma Surg. 1995;114:281–6.

    Article  PubMed  CAS  Google Scholar 

  2. Rand T, Imhof H, Turetschek K, Schneider B, Vögele T, Gäbler C, et al. Comparison of low field (0.2 T) and high field (1.5 T) MR imaging in the differentiation of torned from intact menisci. Eur J Radiol. 1999;30:22–7.

    Article  PubMed  CAS  Google Scholar 

  3. Woertler K, Strothmann M, Tombach B, Reimer P. Detection of articular cartilage lesions: experimental evaluation of low- and high-field-strength MR imaging at 0.18 and 1.0 T. J Magn Reson Imaging. 2000;11:678–85.

    Article  PubMed  CAS  Google Scholar 

  4. Ahn JM, Kwak SM, Kang HS, Muhle C, Pedowitz RA, Frank LR, et al. Evaluation of patellar cartilage in cadavers with a low-field-strength extremity-only magnet: comparison of MR imaging sequences, with macroscopic findings as the standard. Radiology. 1998;208:57–62.

    PubMed  CAS  Google Scholar 

  5. Felson D, Chaisson C, Hill C, Totterman SM, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–9.

    PubMed  CAS  Google Scholar 

  6. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67:206–11.

    Article  PubMed  CAS  Google Scholar 

  7. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226:373–81.

    Article  PubMed  Google Scholar 

  8. Phan CM, Link TM, Blumenkrantz G, Dunn TC, Ries MD, Steinbach LS, et al. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol. 2006;16:608–18.

    Article  PubMed  Google Scholar 

  9. Recht M, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, et al. Abnormalities of articular cartilage in the knee: analysis of available MR technique. Radiology. 1993;187:473–8.

    PubMed  CAS  Google Scholar 

  10. Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier KH, Reiser M. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthritis Cartilage. 2002;10:922–8.

    Article  PubMed  CAS  Google Scholar 

  11. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12:177–90.

    Article  PubMed  CAS  Google Scholar 

  12. Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am. 2003;85-A Suppl 2:70–7.

    PubMed  Google Scholar 

  13. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8:355–68.

    Article  PubMed  Google Scholar 

  14. Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11:741–9.

    PubMed  Google Scholar 

  15. Barr C, Bauer JS, Malfair D, Ma B, Henning TD, Steinbach L, et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol. 2007;17:1518–28.

    Article  PubMed  Google Scholar 

  16. Bauer JS, Barr C, Henning TD, Malfair D, Ma CB, Steinbach L, et al. Magnetic resonance imaging of the ankle at 3.0 Tesla and 1.5 Tesla in human cadaver specimens with artificially created lesions of cartilage and ligaments. Invest Radiol. 2008;43:604–11.

    Article  PubMed  Google Scholar 

  17. Bauer JS, Krause SJ, Ross CJ, Krug R, Carballido-Gamio J, Ozhinsky E, et al. Volumetric cartilage measurements of porcine knee at 1.5-T and 3.0-T MR imaging: evaluation of precision and accuracy. Radiology. 2006;241:399–406.

    Article  PubMed  Google Scholar 

  18. Kijowski R, Blankenbaker D, Davis K, Shinki K, Kaplan L, De Smet AA. Comparison of 1.5 T and 3 T magnetic resonance imaging systems for evaluating the articular cartilage of the knee joint. Chicago: RSNA; 2007. VS21-14.

    Google Scholar 

  19. Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage. 2005;14:63–70.

    Article  PubMed  Google Scholar 

  20. Masi JN, Sell CA, Phan C, Han H, Newitt D, Steinbach L, et al. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology. 2005;236:140–50.

    Article  PubMed  Google Scholar 

  21. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250:839–48.

    Article  PubMed  Google Scholar 

  22. Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol. 2009;38:761–9.

    Article  PubMed  Google Scholar 

  23. Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M, et al. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0 T. Arthritis Rheum. 2005;52:3132–6.

    Article  PubMed  Google Scholar 

  24. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16:1433–41.

    Article  PubMed  CAS  Google Scholar 

  25. Kraff O, Theysohn JM, Maderwald S, Saylor C, Ladd SC, Ladd ME, et al. MRI of the knee at 7.0 Tesla. Rofo. 2007;179:1231–5.

    PubMed  CAS  Google Scholar 

  26. Krug R, Carballido-Gamio J, Banerjee S, Stahl R, Carvajal L, Xu D, et al. In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med. 2007;58:1294–8.

    Article  PubMed  Google Scholar 

  27. Roemer FW, Guermazi A, Lynch JA, Peterfy CG, Nevitt MC, Webb N, et al. Short tau inversion recovery and proton density-weighted fat suppressed sequences for the evaluation of osteoarthritis of the knee with a 1.0 T dedicated extremity MRI: development of a time-efficient sequence protocol. Eur Radiol. 2005;15:978–87.

    Article  PubMed  Google Scholar 

  28. Yamamura M, Miki H, Nakamura N, Murai M, Yoshikawa H, Sugano N. Open-configuration MRI study of femoro-acetabular impingement. J Orthop Res. 2007;25:1582–8.

    Article  PubMed  Google Scholar 

  29. Hinterwimmer S, von Eisenhart-Rothe R, Siebert M, Welsch F, Vogl T, Graichen H. Patella kinematics and patello-femoral contact areas in patients with genu varum and mild osteoarthritis. Clin Biomech (Bristol, Avon). 2004;19:704–10.

    Article  CAS  Google Scholar 

  30. Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging. 2008;28:175–80.

    Article  PubMed  Google Scholar 

  31. Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M, Hunter DJ, et al. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthritis Cartilage. 2008;16:897–902.

    Article  PubMed  CAS  Google Scholar 

  32. Logan M, Dunstan E, Robinson J, Williams A, Gedroyc W, Freeman M. Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open “interventional” multiple resonance imaging. Am J Sports Med. 2004;32:720–6.

    Article  PubMed  Google Scholar 

  33. Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman M. Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med. 2004;32:984–92.

    Article  PubMed  Google Scholar 

  34. Stehling C, Souza RB, Hellio Le Graverand-Gastineau MP, Wyman BT, Li X, Majumdar S, Link TM. Loading of the knee during 3.0 Tesla MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis. ECR 2010, Scientific Program S212.

    Google Scholar 

  35. Lutterbey G, Behrends K, Falkenhausen MV, Wattjes MP, Morakkabati N, Gieseke J, et al. Is the body-coil at 3 Tesla feasible for the MRI evaluation of the painful knee? A comparative study. Eur Radiol. 2007;17:503–8.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer JS, Banerjee S, Henning TD, Krug R, Majumdar S, Link TM. Fast high-spatial-resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T. AJR Am J Roentgenol. 2007;189:240–5.

    Article  PubMed  Google Scholar 

  37. Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26:1001–9.

    Article  PubMed  Google Scholar 

  38. Naraghi A, White L. MRI evaluation of the postoperative knee: special considerations and pitfalls. Clin Sports Med. 2006;25:703–25.

    Article  PubMed  Google Scholar 

  39. Saadat E, Jobke B, Chu B, Lu Y, Cheng J, Li X, et al. Diagnostic performance of in vivo 3 T Fast Spin Echo MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol. 2008;18:2292–302.

    Article  PubMed  Google Scholar 

  40. Kawahara Y, Uetani M, Nakahara N, Doiguchi Y, Nishiguchi M, Futagawa S, et al. Fast spin-echo MR of the articular cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings. Acta Radiol. 1998;39:120–5.

    PubMed  CAS  Google Scholar 

  41. Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage. 2006;14:63–70.

    Article  PubMed  CAS  Google Scholar 

  42. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80:1276–84.

    PubMed  CAS  Google Scholar 

  43. Ramnath RR, Magee T, Wasudev N, Murrah R. Accuracy of 3-T MRI using fast spin-echo technique to detect meniscal tears of the knee. AJR Am J Roentgenol. 2006;187:221–5.

    Article  PubMed  Google Scholar 

  44. Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol. 1999;172:1073–80.

    PubMed  CAS  Google Scholar 

  45. Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231:31–8.

    Article  PubMed  Google Scholar 

  46. Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging. 2004;20:857–64.

    Article  PubMed  Google Scholar 

  47. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed. 2006;19:822–54.

    Article  PubMed  Google Scholar 

  48. Ruehm S, Zanetti M, Romero J, Hodler J. MRI of patellar articular cartilage: evaluation of an optimized gradient echo sequence (3D-DESS). J Magn Reson Imaging. 1998;8:1246–51.

    Article  PubMed  CAS  Google Scholar 

  49. Hargreaves BA, Gold GE, Lang PK, Conolly SM, Pauly JM, Bergman G, et al. MR imaging of articular cartilage using driven equilibrium. Magn Reson Med. 1999;42:695–703.

    Article  PubMed  CAS  Google Scholar 

  50. Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging. 2005;21:476–81.

    Article  PubMed  Google Scholar 

  51. Hargreaves BA, Gold GE, Beaulieu CF, Vasanawala SS, Nishimura DG, Pauly JM. Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med. 2003;49:700–9.

    Article  PubMed  Google Scholar 

  52. Kornaat PR, Reeder SB, Koo S, Brittain JH, Yu H, Andriacchi TP, et al. MR imaging of articular cartilage at 1.5 T and 3.0 T: comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage. 2005;13:338–44.

    Article  PubMed  CAS  Google Scholar 

  53. Bauer J, Barr C, Steinbach L, Malfair, D, Krug, R, Ma, C, Link, TM. Imaging of the articular cartilage of the ankle at 3.0 and 1.5 Tesla. Eur Radiol Suppl. 2006;16(S1):238.

    Google Scholar 

  54. Ristow O, Steinbach L, Sabo G, Krug R, Huber M, Rauscher I, et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee-image quality and diagnostic performance. Eur Radiol. 2009;19:1263–72.

    Article  PubMed  Google Scholar 

  55. Stevens KJ, Busse RF, Han E, Brau AC, Beatty PJ, Beaulieu CF, et al. Ankle: isotropic MR imaging with 3D-FSE-cube – initial experience in healthy volunteers. Radiology. 2008;249:1026–33.

    Article  PubMed  Google Scholar 

  56. Gagliardi JA, Chung EM, Chandnani VP, Kesling KL, Christensen KP, Null RN, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol. 1994;163:629–36.

    PubMed  CAS  Google Scholar 

  57. Kramer J, Recht MP, Imhof H, Stiglbauer R, Engel A. Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr. 1994;18:218–24.

    Article  PubMed  CAS  Google Scholar 

  58. Woertler K, Rummeny EJ, Settles M. A fast high-resolution multislice T1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. AJR Am J Roentgenol. 2005;185:1468–70.

    Article  PubMed  Google Scholar 

  59. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232:592–8.

    Article  PubMed  Google Scholar 

  60. Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R. In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology. 2003;229:269–74.

    Article  PubMed  Google Scholar 

  61. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41:857–65.

    Article  PubMed  CAS  Google Scholar 

  62. Burstein D, Bashir A, Gray ML. MRI techniques in early stages of cartilage disease. Invest Radiol. 2000;35:622–38.

    Article  PubMed  CAS  Google Scholar 

  63. Liess C, Lusse S, Karger N, Heller M, Gluer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage. 2002;10:907–13.

    Article  PubMed  CAS  Google Scholar 

  64. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205:546–50.

    PubMed  CAS  Google Scholar 

  65. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2 – preliminary findings at 3 T. Radiology. 2000;214:259–66.

    PubMed  CAS  Google Scholar 

  66. Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3 T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med. 2005;54:929–36.

    Article  PubMed  Google Scholar 

  67. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T(2) and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients-a 3.0-Tesla MRI study. Eur Radiol. 2009;19:132–43.

    Article  PubMed  Google Scholar 

  68. Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, et al. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging. 1999;17:577–83.

    Article  PubMed  CAS  Google Scholar 

  69. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol. 2001;36:743–8.

    Article  PubMed  CAS  Google Scholar 

  70. Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol. 2004;182:167–72.

    PubMed  Google Scholar 

  71. Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum. 2005;52:3528–35.

    Article  PubMed  CAS  Google Scholar 

  72. Carballido-Gamio J, Link TM, Li X, Han ET, Krug R, Ries MD, et al. Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3 T. J Magn Reson Imaging. 2008;28:227–35.

    Article  PubMed  Google Scholar 

  73. Cheng Y, Wang S, Yamazaki T, Zhao J, Nakajima Y, Tamura S. Hip cartilage thickness measurement accuracy improvement. Comput Med Imaging Graph. 2007;31:643–55.

    Article  PubMed  Google Scholar 

  74. Kim YJ, Bixby S, Mamisch TC, Clohisy JC, Carlisle JC. Imaging structural abnormalities in the hip joint: instability and impingement as a cause of osteoarthritis. Semin Musculoskelet Radiol. 2008;12:334–45.

    Article  PubMed  Google Scholar 

  75. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF, Krupinski EA, Schwartz SA, et al. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol. 2008;37:423–31.

    Article  PubMed  Google Scholar 

  76. Tiderius CJ, Jessel R, Kim YJ, Burstein D. Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med. 2007;57:803–5.

    Article  PubMed  Google Scholar 

  77. Eckstein F, Siedek V, Glaser C, Al-Ali D, Englmeier KH, Reiser M, et al. Correlation and sex differences between ankle and knee cartilage morphology determined by quantitative magnetic resonance imaging. Ann Rheum Dis. 2004;63:1490–5.

    Article  PubMed  CAS  Google Scholar 

  78. Blumenkrantz G, Stahl R, Carballido-Gamio J, Link T, Majumdar S. Longitudinal changes in the heterogeneity of cartilage T2 in osteoarthritis subjects. In: Proceedings of 14th Annual Scientific Meeting of ISMRM. Berlin, Germany; 2007.

    Google Scholar 

  79. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. Benjamin Ma C, Link TM, et al. In vivoT(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15:789–97.

    Article  PubMed  CAS  Google Scholar 

  80. Li X, Han ET, Busse RF, Majumdar S. In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008;59:298–307.

    Article  PubMed  Google Scholar 

  81. Mosher TJ, Liu Y, Yang QX, Yao J, Smith R, Dardzinski BJ, et al. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum. 2004;50:2820–8.

    Article  PubMed  Google Scholar 

  82. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23:547–53.

    Article  PubMed  Google Scholar 

  83. Pfirrmann CW, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology. 2006;240:778–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article was based on a previous publication by the same author in Magnetic Resonance Imaging Clinics of North America (Magn Reson Imaging Clin N Am. 2010 Feb;18(1):95–110) and Radiologic Clinics of North America (Radiol Clin North Am. 2009 Jul;47(4):617–32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Link .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Link, T.M. (2011). MRI of Cartilage: Standard Techniques. In: Link, T. (eds) Cartilage Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8438-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8438-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8437-1

  • Online ISBN: 978-1-4419-8438-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics