Advertisement

Signaling Cross-Talk of Oncogenic KRAS and Hedgehog Pathways in Pancreatic Cancer

  • Xiaodong ChengEmail author
Chapter
  • 486 Downloads

Abstract

Oncogenic transformation is the result of a complex process that involves multiple steps of genetic and cellular alterations, most notably the activation of oncogenes and the inactivation of tumor suppressor genes. Great advances have been made in identifying genetic alterations associated with various human cancers in recent years. The discovery of signaling cross-talk between KRAS and Hedgehog signaling, the two universally dysregulated pathways in pancreatic cancer, provides new insights into understanding the mechanism of pancreatic tumorigenesis and potential novel therapeutic strategy for treating this deadly disease.

Keywords

Pancreatic Ductal Adenocarcinoma Pancreatic Ductal Adenocarcinoma Cell Pancreatic Progenitor Cell Human Pancreatic Ductal Adenocarcinoma Human Pancreatic Ductal Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguirre AJ et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17(24):3112PubMedCrossRefGoogle Scholar
  2. 2.
    Alberts SR (2008) KRAS inhibitors and pancreatic cancer. In: Lowy AM, Leach SD, Philip PA (eds) Pancreatic cancer. Springer, New York, pp 601–607CrossRefGoogle Scholar
  3. 3.
    Almoguera C et al (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53(4):549PubMedCrossRefGoogle Scholar
  4. 4.
    Alpert S, Hanahan D, Teitelman G (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53(2):295PubMedCrossRefGoogle Scholar
  5. 5.
    Barbie DA et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108PubMedCrossRefGoogle Scholar
  6. 6.
    Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2(12):897PubMedCrossRefGoogle Scholar
  7. 7.
    Berman DM et al (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425(6960):846PubMedCrossRefGoogle Scholar
  8. 8.
    Biankin AV et al (2002) DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol 20(23):4531PubMedCrossRefGoogle Scholar
  9. 9.
    Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49(17):4682PubMedGoogle Scholar
  10. 10.
    Caldas C et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8(1):27PubMedCrossRefGoogle Scholar
  11. 11.
    Caldas C et al (1994) Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 54(13):3568PubMedGoogle Scholar
  12. 12.
    Campbell PM et al (2008) Ras-driven transformation of human nestin-positive pancreatic epithelial cells. Meth Enzymol 439:451PubMedCrossRefGoogle Scholar
  13. 13.
    Chen JK et al (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen SJ et al (2003) Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. J Clin Oncol 21(7):1301PubMedCrossRefGoogle Scholar
  15. 15.
    Cooper MK et al (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280(5369):1603PubMedCrossRefGoogle Scholar
  16. 16.
    Cubilla AL, Fitzgerald PJ (1976) Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res 36(7 PT 2):2690PubMedGoogle Scholar
  17. 17.
    Dolma S et al (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285PubMedCrossRefGoogle Scholar
  18. 18.
    Feldmann G et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187PubMedCrossRefGoogle Scholar
  19. 19.
    Feldmann G et al (2008) Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 57(10):1420PubMedCrossRefGoogle Scholar
  20. 20.
    Furukawa T et al (1996) Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 148(6):1763PubMedGoogle Scholar
  21. 21.
    Gisselsson D et al (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci U S A 98(22):12683PubMedCrossRefGoogle Scholar
  22. 22.
    Gorunova L et al (1998) Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23(2):81PubMedCrossRefGoogle Scholar
  23. 23.
    Guo W et al (2008) Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res 68(18):7403PubMedCrossRefGoogle Scholar
  24. 24.
    Hahn SA et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271(5247):350PubMedCrossRefGoogle Scholar
  25. 25.
    Hall PA, Lemoine NR (1992) Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. J Pathol 166(2):97PubMedCrossRefGoogle Scholar
  26. 26.
    Harada T et al (2002) Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res 62(3):835PubMedGoogle Scholar
  27. 27.
    Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605PubMedCrossRefGoogle Scholar
  28. 28.
    Hingorani SR et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437PubMedCrossRefGoogle Scholar
  29. 29.
    Hingorani SR et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469PubMedCrossRefGoogle Scholar
  30. 30.
    Hruban RH et al (2000) Progression model for pancreatic cancer. Clin Cancer Res 6(8):2969PubMedGoogle Scholar
  31. 31.
    Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059PubMedCrossRefGoogle Scholar
  32. 32.
    James G, Goldstein JL, Brown MS (1996) Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc Natl Acad Sci U S A 93(9):4454PubMedCrossRefGoogle Scholar
  33. 33.
    James GL et al (1993) Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 260(5116):1937PubMedCrossRefGoogle Scholar
  34. 34.
    Jhappan C et al (1990) TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61(6):1137PubMedCrossRefGoogle Scholar
  35. 35.
    Ji Z et al (2009) Chemical genetic screening of KRAS-based synthetic lethal inhibitors for pancreatic cancer. Front Biosci 14:2904PubMedCrossRefGoogle Scholar
  36. 36.
    Ji Z et al (2007) Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282(19):14048PubMedCrossRefGoogle Scholar
  37. 37.
    Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801PubMedCrossRefGoogle Scholar
  38. 38.
    Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689PubMedCrossRefGoogle Scholar
  39. 39.
    Kayed H et al (2004) Indian hedgehog signaling pathway: expression and regulation in pancreatic cancer. Int J Cancer 110(5):668PubMedCrossRefGoogle Scholar
  40. 40.
    Klimstra DS, Longnecker DS (1994) K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol 145(6):1547PubMedGoogle Scholar
  41. 41.
    Kohl NE et al (1993) Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260(5116):1934PubMedCrossRefGoogle Scholar
  42. 42.
    Kohl NE et al (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1(8):792PubMedCrossRefGoogle Scholar
  43. 43.
    Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304(5678):1755PubMedCrossRefGoogle Scholar
  44. 44.
    Luo J et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137(5):835PubMedCrossRefGoogle Scholar
  45. 45.
    Luttges J et al (2001) Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158(5):1677PubMedCrossRefGoogle Scholar
  46. 46.
    Luttges J et al (1999) The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer 85(8):1703PubMedCrossRefGoogle Scholar
  47. 47.
    Meszoely IM et al (2001) Developmental aspects of early pancreatic cancer. Cancer J 7(4):242PubMedGoogle Scholar
  48. 48.
    Morton JP et al (2007) Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A 104(12):5103PubMedCrossRefGoogle Scholar
  49. 49.
    Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140PubMedGoogle Scholar
  50. 50.
    Murray NR et al (2004) Protein kinase Ciota is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 164(6):797PubMedCrossRefGoogle Scholar
  51. 51.
    Nolan-Stevaux O et al (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23(1):24PubMedCrossRefGoogle Scholar
  52. 52.
    Ouyang H et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157(5):1623PubMedCrossRefGoogle Scholar
  53. 53.
    Park SW et al (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134(7):2080PubMedCrossRefGoogle Scholar
  54. 54.
    di Magliano Pasca M et al (2006) Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20(22):3161CrossRefGoogle Scholar
  55. 55.
    Peukert S, Miller-Moslin K (2010) Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem 5(4):500PubMedCrossRefGoogle Scholar
  56. 56.
    Pour PM, Pandey KK, Batra SK (2003) What is the origin of pancreatic adenocarcinoma? Mol Cancer 2(1):13PubMedCrossRefGoogle Scholar
  57. 57.
    Pour PM, Schmied BM (1999) One thousand faces of Langerhans islets. Int J Pancreatol 25(3):181PubMedGoogle Scholar
  58. 58.
    Qian J et al (2005) In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res 65(12):5045PubMedCrossRefGoogle Scholar
  59. 59.
    Rejiba S et al (2007) K-ras oncogene silencing strategy reduces tumor growth and enhances gemcitabine chemotherapy efficacy for pancreatic cancer treatment. Cancer Sci 98(7):1128PubMedCrossRefGoogle Scholar
  60. 60.
    Rozenblum E et al (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57(9):1731PubMedGoogle Scholar
  61. 61.
    Rudin CM et al (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361(12):1173PubMedCrossRefGoogle Scholar
  62. 62.
    Scales SJ, de Sauvage FJ (2009) Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci 30(6):303PubMedCrossRefGoogle Scholar
  63. 63.
    Schmied BM et al (2001) Transdifferentiation of human islet cells in a long-term culture. Pancreas 23(2):157PubMedCrossRefGoogle Scholar
  64. 64.
    Schnidar H et al (2009) Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res 69(4):1284PubMedCrossRefGoogle Scholar
  65. 65.
    Scholl C et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137(5):821PubMedCrossRefGoogle Scholar
  66. 66.
    Scotti ML et al (2010) Protein kinase Ciota is required for pancreatic cancer cell transformed growth and tumorigenesis. Cancer Res 70(5):2064PubMedCrossRefGoogle Scholar
  67. 67.
    Sebti SM, Adjei AA (2004) Farnesyltransferase inhibitors. Semin Oncol 31(1 Suppl 1):28PubMedCrossRefGoogle Scholar
  68. 68.
    Seto M et al (2009) Regulation of the hedgehog signaling by the mitogen-activated protein kinase cascade in gastric cancer. Mol Carcinog 48(8):703PubMedCrossRefGoogle Scholar
  69. 69.
    Stecca B et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A 104(14):5895PubMedCrossRefGoogle Scholar
  70. 70.
    Suehara N et al (1997) Telomerase elevation in pancreatic ductal carcinoma compared to nonmalignant pathological states. Clin Cancer Res 3(6):993PubMedGoogle Scholar
  71. 71.
    Tada M et al (1996) Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease. Gastroenterology 110(1):227PubMedCrossRefGoogle Scholar
  72. 72.
    Tascilar M et al (2001) The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res 7(12):4115PubMedGoogle Scholar
  73. 73.
    Thayer SP et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851PubMedCrossRefGoogle Scholar
  74. 74.
    Tremblay MR et al (2008) Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists. J Med Chem 51(21):6646PubMedCrossRefGoogle Scholar
  75. 75.
    Von Hoff DD et al (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361(12):1164CrossRefGoogle Scholar
  76. 76.
    Wang HL et al (2010) KRAS mutation testing in human cancers: the pathologist’s role in the era of personalized medicine. Adv Anat Pathol 17(1):23PubMedGoogle Scholar
  77. 77.
    Whyte DB et al (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459PubMedCrossRefGoogle Scholar
  78. 78.
    Wilentz RE et al (1998) Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58(20):4740PubMedGoogle Scholar
  79. 79.
    Wilentz RE et al (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002PubMedGoogle Scholar
  80. 80.
    Xie J et al (2001) A role of PDGFRalpha in basal cell carcinoma proliferation. Proc Natl Acad Sci U S A 98(16):9255PubMedCrossRefGoogle Scholar
  81. 81.
    Yagoda N et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864PubMedCrossRefGoogle Scholar
  82. 82.
    Yamano M et al (2000) Genetic progression and divergence in pancreatic carcinoma. Am J Pathol 156(6):2123PubMedCrossRefGoogle Scholar
  83. 83.
    Yauch RL et al (2009) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326(5952):572PubMedCrossRefGoogle Scholar
  84. 84.
    Yuan S et al (1996) Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61(1):67PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyThe University of Texas Medical BranchGalvestonUSA

Personalised recommendations