Skip to main content

Kinases and Phosphatases in Hedgehog Signaling

  • Chapter
  • First Online:
  • 497 Accesses

Abstract

The study of posttranslational regulation of proteins has occupied biochemists for well over a half century. Understanding balanced phosphorylation and dephosphorylation of the proteins may be the key to meeting some of the most pressing scientific challenges. A detailed examination of the phosphorylation of many components in Hedgehog (Hh) pathway is leading to a better understanding of the Hh signaling mechanisms. This chapter describes the precise phosphorylation that evolves the phosphorylation/dephosphorylation of the players in Hh signaling cascade, including the signal transducer Smoothened and the transcription factor Ci/Gli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980

    PubMed  CAS  Google Scholar 

  2. Fischer EH, Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216:121–132

    PubMed  CAS  Google Scholar 

  3. Sutherland EW Jr, Wosilait WD (1955) Inactivation and activation of liver phosphorylase. Nature 175:169–170

    Article  PubMed  CAS  Google Scholar 

  4. Jia J, Jiang J (2006) Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 63:1249–1265

    Article  PubMed  CAS  Google Scholar 

  5. Ayers KL, Therond PP (2010) Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol 20:287–298

    Article  PubMed  CAS  Google Scholar 

  6. Eaton S (2008) Multiple roles for lipids in the Hedgehog signalling pathway. Nat Rev Mol Cell Biol 9:437–445

    Article  PubMed  CAS  Google Scholar 

  7. Taipale J, Cooper MK, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897

    Google Scholar 

  8. Denef N, Neubuser D, Perez L, Cohen SM (2000) Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102:521–531

    Article  PubMed  CAS  Google Scholar 

  9. Jia J, Tong C, Wang B, Luo L, Jiang J (2004) Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432:1045–1050

    Article  PubMed  CAS  Google Scholar 

  10. Apionishev S, Katanayeva NM, Marks SA, Kalderon D, Tomlinson A (2005) Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol 7:86–92

    Article  PubMed  CAS  Google Scholar 

  11. Zhang C, Williams EH, Guo Y, Lum L, Beachy PA (2004) Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci USA 101:17900–17907

    Article  PubMed  CAS  Google Scholar 

  12. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304:1755–1759

    Article  PubMed  CAS  Google Scholar 

  13. Aikin RA, Ayers KL, Therond PP (2008) The role of kinases in the Hedgehog signalling pathway. EMBO Rep 9:330–336

    Article  PubMed  CAS  Google Scholar 

  14. Preat T et al (1993) Segmental polarity in Drosophila melanogaster: genetic dissection of fused in a Suppressor of fused background reveals interaction with costal-2. Genetics 135:1047–1062

    PubMed  CAS  Google Scholar 

  15. Therond P et al (1993) Molecular organisation and expression pattern of the segment polarity gene fused of Drosophila melanogaster. Mech Dev 44:65–80. doi:0925-4773(93)90017-R [pii]

    Article  PubMed  CAS  Google Scholar 

  16. Alves G et al (1998) Modulation of Hedgehog target gene expression by the Fused serine-threonine kinase in wing imaginal discs. Mech Dev 78:17–31

    Article  PubMed  CAS  Google Scholar 

  17. Therond PP, Knight JD, Kornberg TB, Bishop JM (1996) Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc Natl Acad Sci USA 93:4224–4228

    Article  PubMed  CAS  Google Scholar 

  18. Lum L et al (2003) Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12:1261–1274

    Article  PubMed  CAS  Google Scholar 

  19. Ascano M Jr, Nybakken KE, Sosinski J, Stegman MA, Robbins DJ (2002) The carboxyl-terminal domain of the protein kinase fused can function as a dominant inhibitor of hedgehog signaling. Mol Cell Biol 22:1555–1566

    Article  PubMed  CAS  Google Scholar 

  20. Fukumoto T, Watanabe-Fukunaga R, Fujisawa K, Nagata S, Fukunaga R (2001) The fused protein kinase regulates Hedgehog-stimulated transcriptional activation in Drosophila Schneider 2 cells. J Biol Chem 276:38441–38448

    Article  PubMed  CAS  Google Scholar 

  21. Robbins DJ et al (1997) Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90:225–234

    Article  PubMed  CAS  Google Scholar 

  22. Sisson JC, Ho KS, Suyama K, Scott MP (1997) Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90:235–245

    Article  PubMed  CAS  Google Scholar 

  23. Wang QT, Holmgren RA (1999) The subcellular localization and activity of Drosophila cubitus interruptus are regulated at multiple levels. Development 126:5097–5106

    PubMed  CAS  Google Scholar 

  24. Chen CH et al (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98:305–316

    Article  PubMed  CAS  Google Scholar 

  25. Stegman MA et al (2000) Identification of a tetrameric hedgehog signaling complex. J Biol Chem 275:21809–21812

    Article  PubMed  CAS  Google Scholar 

  26. Wang G, Amanai K, Wang B, Jiang J (2000) Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev 14:2893–2905

    Article  PubMed  CAS  Google Scholar 

  27. Monnier V, Ho KS, Sanial M, Scott MP, Plessis A (2002) Hedgehog signal transduction proteins: contacts of the Fused kinase and Ci transcription factor with the kinesin-related protein Costal2. BMC Dev Biol 2:4

    Article  PubMed  Google Scholar 

  28. Zhang W et al (2005) Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell 8:267–278

    Article  PubMed  CAS  Google Scholar 

  29. Price MA (2006) CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20:399–410

    Article  PubMed  CAS  Google Scholar 

  30. Liu Y, Cao X, Jiang J, Jia J (2007) Fused-Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes Dev 21:1949–1963

    Article  PubMed  CAS  Google Scholar 

  31. Ogden SK et al (2003) Identification of a functional interaction between the transmembrane protein Smoothened and the kinesin-related protein Costal2. Curr Biol 13:1998–2003

    Article  PubMed  CAS  Google Scholar 

  32. Jia J, Tong C, Jiang J (2003) Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail. Genes Dev 17:2709–2720

    Article  PubMed  CAS  Google Scholar 

  33. Ruel L, Rodriguez R, Gallet A, Lavenant-Staccini L, Therond PP (2003) Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat Cell Biol 5:907–913

    Article  PubMed  CAS  Google Scholar 

  34. Ho KS, Suyama K, Fish M, Scott MP (2005) Differential regulation of Hedgehog target gene transcription by Costal2 and Suppressor of Fused. Development 132:1401–1412

    Article  PubMed  CAS  Google Scholar 

  35. Nybakken KE, Turck CW, Robbins DJ, Bishop JM (2002) Hedgehog-stimulated phosphorylation of the kinesin-related protein Costal2 is mediated by the serine/threonine kinase fused. J Biol Chem 277:24638–24647

    Article  PubMed  CAS  Google Scholar 

  36. Ruel L et al (2007) Phosphorylation of the atypical kinesin Costal2 by the kinase Fused induces the partial disassembly of the Smoothened-Fused-Costal2-Cubitus interruptus complex in Hedgehog signalling. Development 134:3677–3689

    Article  PubMed  CAS  Google Scholar 

  37. Methot N, Basler K (2000) Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development 127:4001–4010

    PubMed  CAS  Google Scholar 

  38. Preat T (1992) Characterization of Suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics 132:725–736

    PubMed  CAS  Google Scholar 

  39. Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    Article  PubMed  CAS  Google Scholar 

  40. Dussillol-Godar F et al (2006) Modulation of the Suppressor of fused protein regulates the Hedgehog signaling pathway in Drosophila embryo and imaginal discs. Dev Biol 291:53–66

    Article  PubMed  CAS  Google Scholar 

  41. Aza-Blanc P, Ramirez-Weber FA, Laget MP, Schwartz C, Kornberg TB (1997) Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89:1043–1053

    Article  PubMed  CAS  Google Scholar 

  42. Methot N, Basler K (1999) Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96:819–831

    Article  PubMed  CAS  Google Scholar 

  43. Lecuit T et al (1996) Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381:387–393

    Article  PubMed  CAS  Google Scholar 

  44. Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85:357–368

    Article  PubMed  CAS  Google Scholar 

  45. Jiang J, Struhl G (1995) Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80:563–572

    Article  PubMed  CAS  Google Scholar 

  46. Lepage T, Cohen SM, Diaz-Benjumea FJ, Parkhurst SM (1995) Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature 373:711–715

    Article  PubMed  CAS  Google Scholar 

  47. Li W, Ohlmeyer JT, Lane ME, Kalderon D (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80:553–562

    Article  PubMed  CAS  Google Scholar 

  48. Pan D, Rubin GM (1995) cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80:543–552

    Article  PubMed  CAS  Google Scholar 

  49. Chen Y, Cardinaux JR, Goodman RH, Smolik SM (1999) Mutants of cubitus interruptus that are independent of PKA regulation are independent of hedgehog signaling. Development 126:3607–3616

    PubMed  CAS  Google Scholar 

  50. Price MA, Kalderon D (1999) Proteolysis of cubitus interruptus in Drosophila requires phosphorylation by protein kinase A. Development 126:4331–4339

    PubMed  CAS  Google Scholar 

  51. Wang G, Wang B, Jiang J (1999) Protein kinase A antagonizes Hedgehog signaling by regula­ting both the activator and repressor forms of Cubitus interruptus. Genes Dev 13:2828–2837

    Article  PubMed  CAS  Google Scholar 

  52. Jia J et al (2002) Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416:548–552

    Article  PubMed  CAS  Google Scholar 

  53. Price MA, Kalderon D (2002) Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108:823–835

    Article  PubMed  CAS  Google Scholar 

  54. Jiang J (2002) Degrading Ci: who is Cul-pable? Genes Dev 16:2315–2321

    Article  PubMed  CAS  Google Scholar 

  55. Jiang J, Struhl G (1998) Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:493–496

    Article  PubMed  CAS  Google Scholar 

  56. Maniatis T (1999) A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13:505–510

    Article  PubMed  CAS  Google Scholar 

  57. Jia J et al (2005) Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/beta-TRCP-mediated proteolytic processing. Dev Cell 9:819–830

    Article  PubMed  CAS  Google Scholar 

  58. Smelkinson MG, Kalderon D (2006) Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component slimb. Curr Biol 16:110–116

    Article  PubMed  CAS  Google Scholar 

  59. Hooper JE, Scott MP (2005) Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6:306–317

    Article  PubMed  CAS  Google Scholar 

  60. Wang G, Jiang J (2004) Multiple Cos2/Ci interactions regulate Ci subcellular localization through microtubule dependent and independent mechanisms. Dev Biol 268:493–505

    Article  PubMed  CAS  Google Scholar 

  61. Lee J, Platt KA, Censullo P, Altaba AR (1997) Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124:2537–2552

    PubMed  CAS  Google Scholar 

  62. Ding Q et al (1998) Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125:2533–2543

    PubMed  CAS  Google Scholar 

  63. Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125:2759–2770

    PubMed  CAS  Google Scholar 

  64. Dai P et al (1999) Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem 274:8143–8152

    Article  PubMed  CAS  Google Scholar 

  65. Bai CB, Stephen D, Joyner AL (2004) All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell 6:103–115

    Article  PubMed  CAS  Google Scholar 

  66. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761

    Article  PubMed  CAS  Google Scholar 

  67. Bai CB, Joyner AL (2001) Gli1 can rescue the in vivo function of Gli2. Development 128:5161–5172

    PubMed  CAS  Google Scholar 

  68. Park HL et al (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593–1605

    PubMed  CAS  Google Scholar 

  69. Buttitta L, Mo R, Hui CC, Fan CM (2003) Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130:6233–6243

    Article  PubMed  CAS  Google Scholar 

  70. Motoyama J et al (2003) Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol 259:150–161

    Article  PubMed  CAS  Google Scholar 

  71. McDermott A et al (2005) Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 132:345–357

    Article  PubMed  CAS  Google Scholar 

  72. Tyurina OV et al (2005) Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol 277:537–556

    Article  PubMed  CAS  Google Scholar 

  73. Pan Y, Bai CB, Joyner AL, Wang B (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26:3365–3377

    Article  PubMed  CAS  Google Scholar 

  74. Aza-Blanc P, Lin HY, Ruiz i Altaba A, Kornberg TB (2000) Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 127:4293–4301

    PubMed  Google Scholar 

  75. Ruiz i Altaba A (1999) Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development 126:3205–3216

    PubMed  Google Scholar 

  76. Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423–434

    Article  PubMed  CAS  Google Scholar 

  77. Wang B, Li Y (2006) Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103:33–38

    Article  PubMed  CAS  Google Scholar 

  78. Tempe D, Casas M, Karaz S, Blanchet-Tournier MF, Concordet JP (2006) Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP. Mol Cell Biol 26:4316–4326

    Article  PubMed  CAS  Google Scholar 

  79. Zheng X, Mann RK, Sever N, Beachy PA (2010) Genetic and biochemical definition of the Hedgehog receptor. Genes Dev 24:57–71

    Article  PubMed  CAS  Google Scholar 

  80. Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86:221–232

    Article  PubMed  CAS  Google Scholar 

  81. Ogden SK et al (2008) G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456:967–970

    Article  PubMed  CAS  Google Scholar 

  82. Davidson G et al (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872

    Article  PubMed  CAS  Google Scholar 

  83. Zeng X et al (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877

    Article  PubMed  CAS  Google Scholar 

  84. Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450:252–258

    Article  PubMed  CAS  Google Scholar 

  85. Hooper JE (2003) Smoothened translates Hedgehog levels into distinct responses. Development 130:3951–3963

    Article  PubMed  CAS  Google Scholar 

  86. Liu Y, Cao X, Jiang J, Jia J (2007) Fused Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes Dev 21:1949–1963

    Article  PubMed  CAS  Google Scholar 

  87. Claret S, Sanial M, Plessis A (2007) Evidence for a novel feedback loop in the hedgehog pathway involving smoothened and fused. Curr Biol 17:1326–1333

    Article  PubMed  CAS  Google Scholar 

  88. Cheng S, Maier D, Neubueser D, Hipfner DR (2009) Regulation of smoothened by Drosophila G-protein-coupled receptor kinases. Dev Biol 337:99–109

    Article  PubMed  CAS  Google Scholar 

  89. Molnar C, Holguin H, Mayor F Jr, Ruiz-Gomez A, de Celis JF (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci USA 104:7963–7968

    Article  PubMed  CAS  Google Scholar 

  90. Chen W et al (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306:2257–2260

    Article  PubMed  CAS  Google Scholar 

  91. Meloni AR et al (2006) Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 26:7550–7560

    Article  PubMed  CAS  Google Scholar 

  92. Chen MH, Gao N, Kawakani T, and Chuang PT (2005) Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed Hedgehog signaling during embryonic development. Mol Cell Bio 25:7042–7053

    Google Scholar 

  93. Merchant M et al (2005). Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol 25:7054–7068

    Google Scholar 

  94. Varjosalo M et al (2008) Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 133:537–548

    Article  PubMed  CAS  Google Scholar 

  95. Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Osterlund T (2010) Identification of a novel serine/threonine kinase ULK3 as a positive regulator of Hedgehog pathway. Exp Cell Res 316:627–637

    Article  PubMed  CAS  Google Scholar 

  96. Cohen PT (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 22:245–251

    Article  PubMed  CAS  Google Scholar 

  97. Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N (2005) A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet 37:1323–1332

    Article  PubMed  CAS  Google Scholar 

  98. Rorick AM et al (2007) PP2A:B56epsilon is required for eye induction and eye field separation. Dev Biol 302:477–493

    Article  PubMed  CAS  Google Scholar 

  99. Casso DJ, Liu S, Iwaki DD, Ogden SK, Kornberg TB (2008) A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics 178:1399–1413

    Article  PubMed  CAS  Google Scholar 

  100. Jia H, Liu Y, Yan W, Jia J (2009) PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation. Development 136:307–316

    Article  PubMed  CAS  Google Scholar 

  101. Heemskerk J, DiNardo S (1994) Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76:449–460

    Article  PubMed  CAS  Google Scholar 

  102. Strigini M, Cohen SM (1997) A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124:4697–4705

    PubMed  CAS  Google Scholar 

  103. Roelink H et al (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81:445–455

    Article  PubMed  CAS  Google Scholar 

  104. Briscoe J, Ericson J (1999) The specification of neuronal identity by graded Sonic Hedgehog signalling. Semin Cell Dev Biol 10:353–362

    Article  PubMed  CAS  Google Scholar 

  105. Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49

    Article  PubMed  CAS  Google Scholar 

  106. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  PubMed  CAS  Google Scholar 

  107. Campbell G, Tomlinson A (1999) Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. Cell 96:553–562

    Article  PubMed  CAS  Google Scholar 

  108. Vervoort M, Crozatier M, Valle D, Vincent A (1999) The COE transcription factor Collier is a mediator of short-range Hedgehog-induced patterning of the Drosophila wing. Curr Biol 9:632–639

    Article  PubMed  CAS  Google Scholar 

  109. Tomlinson A (2003) Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell 5:799–809

    Article  PubMed  CAS  Google Scholar 

  110. Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    Article  PubMed  CAS  Google Scholar 

  111. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  PubMed  CAS  Google Scholar 

  112. Zhao Y, Tong C, Jiang J (2007) Transducing the Hedgehog signal across the plasma membrane. Fly (Austin) 1:333–336. doi:5570 [pii]

    Google Scholar 

  113. Ohlmeyer JT, Kalderon D (1998) Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 396:749–753

    Article  PubMed  CAS  Google Scholar 

  114. Jacob J, Briscoe J (2003) Gli proteins and the control of spinal-cord patterning. EMBO Rep 4:761–765

    Article  PubMed  CAS  Google Scholar 

  115. Stamataki D, Ulloa F, Tsoni SV, Mynett A, Briscoe J (2005) A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev 19:626–641

    Article  PubMed  CAS  Google Scholar 

  116. Litingtung Y, Chiang C (2000) Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci 3:979–985

    Article  PubMed  CAS  Google Scholar 

  117. Persson M et al (2002) Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev 16:2865–2878

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jia, J. (2011). Kinases and Phosphatases in Hedgehog Signaling. In: Xie, J. (eds) Hedgehog signaling activation in human cancer and its clinical implications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8435-7_4

Download citation

Publish with us

Policies and ethics