Advertisement

Regulation of the Hedgehog Morphogene Gradient

  • G. D’Angelo
  • F. Wendler
  • K. Ayers
  • P. P. ThérondEmail author
Chapter

Abstract

The development of a multicellular organism is controlled by a genetic program that manifests itself in proliferation, cell differentiation, and apoptosis, leading to the formation of functional organs. A small number of secreted molecules work as “instructors” during these processes [1, 2]. Among them are the Hedgehog (Hh) family of proteins, which act from their source of production at short and long range. They trigger cell fate decisions by inducing a signaling cascade in the ligand-receiving tissues of invertebrates and vertebrates. Dramatic developmental abnormalities are observed in human embryos with compromised Hh signaling, and while great effort is being made to understand and manipulate the signaling cascade downstream of Hh receptor activation, less attention has been payed to the secretion and release of the Hh ligand itself. In this review, we will discuss recent progresses in the understanding of Hh ligand packaging and dispatch from producing cells and its consequences for gradient formation.

Keywords

Hedgehog Secretion Trafficking Morphogenetic gradient Extracellular matrix Heparan sulfate proteoglycans 

References

  1. 1.
    Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472PubMedCrossRefGoogle Scholar
  2. 2.
    Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133:385–394PubMedCrossRefGoogle Scholar
  3. 3.
    Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein signals. Annu Rev Biochem 73:891–923PubMedCrossRefGoogle Scholar
  4. 4.
    Pepinsky RB et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045PubMedCrossRefGoogle Scholar
  5. 5.
    Chamoun Z et al (2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293:2080–2084PubMedCrossRefGoogle Scholar
  6. 6.
    Micchelli CA, The I, Selva E, Mogila V, Perrimon N (2002) Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 129:843–851PubMedGoogle Scholar
  7. 7.
    Amanai K, Jiang J (2001) Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development 128:5119–5127PubMedGoogle Scholar
  8. 8.
    Lee JD, Treisman JE (2001) Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr Biol 11:1147–1152PubMedCrossRefGoogle Scholar
  9. 9.
    Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25:111–112PubMedCrossRefGoogle Scholar
  10. 10.
    Maity T, Fuse N, Beachy PA (2005) Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci USA 102:17026–17031PubMedCrossRefGoogle Scholar
  11. 11.
    Gallet A, Rodriguez R, Ruel L, Therond PP (2003) Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog. Dev Cell 4:191–204PubMedCrossRefGoogle Scholar
  12. 12.
    Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088PubMedCrossRefGoogle Scholar
  13. 13.
    Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT (2004) Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 18:641–659PubMedCrossRefGoogle Scholar
  14. 14.
    Abe Y, Kita Y, Niikura T (2008) Mammalian Gup1, a homolog of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog. FEBS J 275:318–331PubMedCrossRefGoogle Scholar
  15. 15.
    Miura GI, Treisman JE (2006) Lipid modification of secreted signaling proteins. Cell Cycle 5:1184–1188PubMedCrossRefGoogle Scholar
  16. 16.
    Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283:22076–22088PubMedCrossRefGoogle Scholar
  17. 17.
    Takada R et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor FR et al (2001) Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40:4359–4371PubMedCrossRefGoogle Scholar
  19. 19.
    Peters C, Wolf A, Wagner M, Kuhlmann J, Waldmann H (2004) The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc Natl Acad Sci USA 101:8531–8536PubMedCrossRefGoogle Scholar
  20. 20.
    Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054PubMedCrossRefGoogle Scholar
  21. 21.
    Vyas N et al (2008) Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133:1214–1227PubMedCrossRefGoogle Scholar
  22. 22.
    Katanaev VL et al (2008) Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J 27:509–521PubMedCrossRefGoogle Scholar
  23. 23.
    Langhorst MF, Reuter A, Stuermer CA (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240PubMedCrossRefGoogle Scholar
  24. 24.
    Burke R et al (1999) Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99:803–815PubMedCrossRefGoogle Scholar
  25. 25.
    Tian H, Jeong J, Harfe BD, Tabin CJ, McMahon AP (2005) Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand. Development 132:133–142PubMedCrossRefGoogle Scholar
  26. 26.
    Caspary T et al (2002) Mouse Dispatched homolog1 is required for long-range, but not juxtacrine Hh signaling. Curr Biol 12:1628–1632PubMedCrossRefGoogle Scholar
  27. 27.
    Ma Y et al (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111:63–75PubMedCrossRefGoogle Scholar
  28. 28.
    Yakushi T, Masuda K, Narita S, Matsuyama S, Tokuda H (2000) A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2:212–218PubMedCrossRefGoogle Scholar
  29. 29.
    Kuwabara PE, Labouesse M (2002) The sterol-sensing domain: multiple families, a unique role? Trends Genet 18:193–201PubMedCrossRefGoogle Scholar
  30. 30.
    Ohgami N et al (2004) Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci USA 101:12473–12478PubMedCrossRefGoogle Scholar
  31. 31.
    Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65PubMedCrossRefGoogle Scholar
  32. 32.
    Gallet A, Ruel L, Staccini-Lavenant L, Therond PP (2006) Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 133:407–418PubMedCrossRefGoogle Scholar
  33. 33.
    Vincent JP, Dubois L (2002) Morphogen transport along epithelia, an integrated trafficking problem. Dev Cell 3:615–623PubMedCrossRefGoogle Scholar
  34. 34.
    Han C, Belenkaya TY, Wang B, Lin X (2004) Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131:601–611PubMedCrossRefGoogle Scholar
  35. 35.
    Torroja C, Gorfinkiel N, Guerrero I (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development 131:2395–2408PubMedCrossRefGoogle Scholar
  36. 36.
    Gallet A, Therond PP (2005) Temporal modulation of the Hedgehog morphogen gradient by a patched-dependent targeting to lysosomal compartment. Dev Biol 277:51–62PubMedCrossRefGoogle Scholar
  37. 37.
    Bulow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407PubMedCrossRefGoogle Scholar
  38. 38.
    Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131:1927–1938PubMedCrossRefGoogle Scholar
  39. 39.
    Eugster C, Panakova D, Mahmoud A, Eaton S (2007) Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev Cell 13:57–71PubMedCrossRefGoogle Scholar
  40. 40.
    Capurro MI et al (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14:700–711PubMedCrossRefGoogle Scholar
  41. 41.
    Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394:85–88PubMedCrossRefGoogle Scholar
  42. 42.
    The I, Bellaiche Y, Perrimon N (1999) Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell 4:633–639PubMedCrossRefGoogle Scholar
  43. 43.
    Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82PubMedCrossRefGoogle Scholar
  44. 44.
    Han C et al (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131:1563–1575PubMedCrossRefGoogle Scholar
  45. 45.
    Ayers KL, Gallet A, Staccini-Lavenant L, Therond PP (2010) The long-range activity of Hedgehog is regulated in the apical extracellular space by the glypican Dally and the hydrolase Notum. Dev Cell 18:605–620PubMedCrossRefGoogle Scholar
  46. 46.
    Takeo S, Akiyama T, Firkus C, Aigaki T, Nakato H (2005) Expression of a secreted form of Dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of Hedgehog. Dev Biol 284:204–218PubMedCrossRefGoogle Scholar
  47. 47.
    Giraldez AJ, Copley RR, Cohen SM (2002) HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev Cell 2:667–676PubMedCrossRefGoogle Scholar
  48. 48.
    Han C, Yan D, Belenkaya TY, Lin X (2005) Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132:667–679PubMedCrossRefGoogle Scholar
  49. 49.
    Traister A, Shi W, Filmus J (2008) Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 410:503–511Google Scholar
  50. 50.
    Dierker T, Dreier R, Migone M, Hamer S, Grobe K (2009) Heparan sulfate and transglutaminase activity are required for the formation of covalently cross-linked hedgehog oligomers. J Biol Chem 284:32562–32571PubMedCrossRefGoogle Scholar
  51. 51.
    Etheridge LA, Crawford TQ, Zhang S, Roelink H (2010) Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development 137:133–140PubMedCrossRefGoogle Scholar
  52. 52.
    Chan JA et al (2009) Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses. Nat Neurosci 12:409–417PubMedCrossRefGoogle Scholar
  53. 53.
    Song HH, Shi W, Xiang YY, Filmus J (2005) The loss of glypican-3 induces alterations in Wnt signaling. J Biol Chem 280:2116–2125PubMedCrossRefGoogle Scholar
  54. 54.
    Capurro MI, Li F, Filmus J (2009) Overgrowth of a mouse model of Simpson-Golabi-Behmel syndrome is partly mediated by Indian hedgehog. EMBO Rep 10:901–907PubMedCrossRefGoogle Scholar
  55. 55.
    Glise B et al (2005) Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog. Dev Cell 8:255–266PubMedCrossRefGoogle Scholar
  56. 56.
    Gorfinkiel N, Sierra J, Callejo A, Ibanez C, Guerrero I (2005) The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev Cell 8:241–253PubMedCrossRefGoogle Scholar
  57. 57.
    Woods IG, Talbot WS (2005) The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol 3:e66PubMedCrossRefGoogle Scholar
  58. 58.
    Kawakami A et al (2005) The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Curr Biol 15:480–488PubMedCrossRefGoogle Scholar
  59. 59.
    Eaton S (2006) Release and trafficking of lipid-linked morphogens. Curr Opin Genet Dev 16:17–22PubMedCrossRefGoogle Scholar
  60. 60.
    Zeng X et al (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411:716–720PubMedCrossRefGoogle Scholar
  61. 61.
    Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961PubMedCrossRefGoogle Scholar
  62. 62.
    Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435:172–177PubMedCrossRefGoogle Scholar
  63. 63.
    Incardona JP et al (2000) Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 97:12044–12049PubMedCrossRefGoogle Scholar
  64. 64.
    Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607PubMedCrossRefGoogle Scholar
  65. 65.
    Hsiung F, Ramirez-Weber FA, Iwaki DD, Kornberg TB (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437:560–563PubMedCrossRefGoogle Scholar
  66. 66.
    Yauch RL et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410PubMedCrossRefGoogle Scholar
  67. 67.
    Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087PubMedCrossRefGoogle Scholar
  68. 68.
    Karhadkar SS et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707–712PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. D’Angelo
  • F. Wendler
  • K. Ayers
  • P. P. Thérond
    • 1
    Email author
  1. 1.Institut Biologie du Développement & Cancer – IBDCUniversité de Nice Sophia-Antipolis, UMR6543 CNRS, Centre de BiochimieNice cedex 2France

Personalised recommendations