Small-Molecule Inhibitors of the Hedgehog Pathway

  • Ari J. Firestone
  • James K. ChenEmail author


The causal link between uncontrolled Hedgehog (Hh) pathway activation and oncogenesis has inspired the development of small-molecule inhibitors of this developmental signaling pathway. In this chapter, we discuss how a cyclopia-inducing natural product isolated in the 1950s has engendered a pharmacopoeia of compounds that block Hh target gene expression. We describe how these Hh pathway inhibitors were discovered, their mechanisms of action, and their potential as anti-cancer agents. We also examine potential limitations of current approaches and future directions for Hh pathway-targeting chemotherapies.


Primary Cilium Betulinic Acid Nevoid Basal Cell Carcinoma Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allen BL, Tenzen T, McMahon AP (2007) The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 21: 1244–1257PubMedCrossRefGoogle Scholar
  2. 2.
    Arai M, Tateno C, Hosoya T, Koyano T, Kowithayakorn T, Ishibashi M (2008) Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg Med Chem 16: 9420–9424PubMedCrossRefGoogle Scholar
  3. 3.
    Bahceci S, Bajjalieh W, Chen J, Epshteyn S, Forsyth TP, Huynh TP, Kim BG, Lehy JW, Lee MS, Lewis GL, et al. (2008) Inhibitors of the Hedgehog pathway. WO/2008/112913, 18 Sept 2008Google Scholar
  4. 4.
    Balkovec JM, Thieringer R, Waddell ST (2008) Triazole derivatives which are Smo antagonists. WO/2008/130552, 30 Oct 2008Google Scholar
  5. 5.
    Beauchamp E, Bulut G, Abaan O, Chen K, Merchant A, Matsui W, Endo Y, Rubin JS, Toretsky J, Uren A (2009) GLII is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem 284: 9074–9082PubMedCrossRefGoogle Scholar
  6. 6.
    Belloni E, Muenke M, Roessler E, Traverso G, Siegel-Bartelt J, Frumkin A, Mitchell HF, Donis-Keller H, Helms C, Hing AV, et al. (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14: 353–356PubMedCrossRefGoogle Scholar
  7. 7.
    Berman D, Karhadkar S, Hallahan A, Pritchard J, Eberhart C, Watkins D, Chen J, Cooper M, Taipale J, Olson J, et al. (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297: 1559–1561PubMedCrossRefGoogle Scholar
  8. 8.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, et al. (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425: 846–851PubMedCrossRefGoogle Scholar
  9. 9.
    Binns W, Thacker EJ, James LF, Huffman WT (1959) A congenital cyclopiantype malformation in lambs. J Am Vet Med Assoc 134: 180–183PubMedGoogle Scholar
  10. 10.
    Binns W, James LF, Shupe JL, Everett G (1963) A congenital cyclopian-type malformation in lambs induced by maternal ingestion of a range plant, Veratrum Californicum. Am J Vet Res 24: 1164–1175PubMedGoogle Scholar
  11. 11.
    Brown D (1978) Structure-activity relation of steroidal amine teratogens. In effects of poisonous plants on livestock. Keeler RF, Van Kampen KR, James LF, (eds) New York, Academic Press, p 409Google Scholar
  12. 12.
    Brunton SA, Stibbard JHA, Rubin LL, Kruse LI, Guicherit OM, Boyd EA, Price S (2008) Potent inhibitors of the hedgehog signaling pathway. J Med Chem 51: 1108–1110PubMedCrossRefGoogle Scholar
  13. 13.
    Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283: 22076–22088PubMedCrossRefGoogle Scholar
  14. 14.
    Chen J, Taipale J, Cooper M, Beachy P (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16: 2743–2748PubMedCrossRefGoogle Scholar
  15. 15.
    Chen J, Taipale J, Young K, Maiti T, Beachy P (2002) Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99: 14071–14076PubMedCrossRefGoogle Scholar
  16. 16.
    Chen B, Dodge M, Tang W, Lu J, Ma Z, Fan C, Wei S, Hao W, Kilgore J, Williams N, et al. (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5: 100–107PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng SY, Bishop JM (2002) Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 99: 5442–5447PubMedCrossRefGoogle Scholar
  18. 18.
    Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413PubMedCrossRefGoogle Scholar
  19. 19.
    Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397: 617–621PubMedCrossRefGoogle Scholar
  20. 20.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437: 1018–1021PubMedCrossRefGoogle Scholar
  21. 21.
    Damu AG, Kuo PC, Su CR, Kuo TH, Chen TH, Bastow KF, Lee KH, Wu TS (2007) Isolation, structures, and structure - cytotoxic activity relationships of withanolides and physalins from Physalis angulata. J Nat Prod 70: 1146–1152PubMedCrossRefGoogle Scholar
  22. 22.
    Dennler S, André J, Verrecchia F, Mauviel A (2009) Cloning of the human GLI2 Promoter: transcriptional activation by transforming growth factor-beta via SMAD3/beta-catenin cooperation. J Biol Chem 284: 31523–31531PubMedCrossRefGoogle Scholar
  23. 23.
    Dessole G, Branca D, Ferrigno F, Kinzel O, Muraglia E, Palumbi M, Rowley M, Serafini S, Steinkuhler C, Jones P (2009) Discovery of N-[(1-aryl-1H-indazol-5-yl)methyl]amides derivatives as smoothened antagonists for inhibition of the hedgehog pathway. Bioorg Med Chem Lett 19: 4191–4195PubMedCrossRefGoogle Scholar
  24. 24.
    Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mertelsmann R, Kelleher JF, et al. (2007) Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 13: 944–951PubMedCrossRefGoogle Scholar
  25. 25.
    Ding Q, Fukami S, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M, Hui C (1999) Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol 9: 1119–1122PubMedCrossRefGoogle Scholar
  26. 26.
    Fauber B, Hird A, Janetka J, Russell DJ, Bin Y (2009) Phenylcarboxamide derivatives as inhibitors and effectors of the Hedgehog pathway. WO/2009/030952, 3 Dec 2009Google Scholar
  27. 27.
    Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, et al. (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14: 78–81PubMedCrossRefGoogle Scholar
  28. 28.
    Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1: e53PubMedCrossRefGoogle Scholar
  29. 29.
    Hosoya T, Arai M, Koyano T, Kowithayakorn T, Ishibashi M (2008) Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 9: 1082–1092PubMedCrossRefGoogle Scholar
  30. 30.
    Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R (2010) The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev 24: 670–682PubMedCrossRefGoogle Scholar
  31. 31.
    Hyman J, Firestone A, Heine V, Zhao Y, Ocasio C, Han K, Sun M, Rack P, Sinha S, Wu J, et al. (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 106: 14132–14137Google Scholar
  32. 32.
    Ji Z, Mei FC, Xie J, Cheng X (2007) Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282: 14048–14055PubMedCrossRefGoogle Scholar
  33. 33.
    Jiang J, Hui C-C (2008) Hedgehog signaling in development and cancer. Dev Cell 15: 801–812PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH, et al. (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671PubMedCrossRefGoogle Scholar
  35. 35.
    Jones CS, La Greca S, Li Q, Munchhof MJ, Reiter LA (2009) Benzimidazole derivatives. WO/2009/004427; 1 Aug 2009Google Scholar
  36. 36.
    Joo J, Christensen L, Warner K, States L, Kang H-G, Vo K, Lawlor ER, May WA (2009) GLI1 is a central mediator of EWS/FLI1 signaling in Ewing tumors. PLoS One 4: e7608PubMedCrossRefGoogle Scholar
  37. 37.
    Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712PubMedCrossRefGoogle Scholar
  38. 38.
    Keeler RF, Binns W (1966) Teratogenic compounds of Veratrum californicum (Durand). II. Production of ovine fetal cyclopia by fractions and alkaloid preparations. Can J Biochem 44: 829–838PubMedGoogle Scholar
  39. 39.
    Kimura H, Stephen D, Joyner A, Curran T (2005) Glil is important for medulloblastoma formation in Ptc1 +/− mice. Oncogene 24: 4026–4036PubMedGoogle Scholar
  40. 40.
    Kimura H, Ng JM, Curran T (2008) Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13: 249–260PubMedCrossRefGoogle Scholar
  41. 41.
    Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, Toftgard R, Zaphiropoulos PG. (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1: 312–319PubMedCrossRefGoogle Scholar
  42. 42.
    Lam CW, Xie J, To KF, Ng HK, Lee KC, Yuen NW, Lim PL, Chan LY, Tong SF, McCormick F (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18: 833–836PubMedCrossRefGoogle Scholar
  43. 43.
    Lauth M, Bergstrom A, Shimokawa T, Toftgard R (2007) Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104: 8455–8460PubMedCrossRefGoogle Scholar
  44. 44.
    Le H, Kleinerman R, Lerman OZ, Brown D, Galiano R, Gurtner GC, Warren SM, Levine JP, Saadeh PB (2008) Hedgehog signaling is essential for normal wound healing. Wound Repair Regen 16: 768–773PubMedCrossRefGoogle Scholar
  45. 45.
    Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9: 855–861PubMedCrossRefGoogle Scholar
  46. 46.
    Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C (2002) Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418: 979–983PubMedCrossRefGoogle Scholar
  47. 47.
    Liu A, Wang B, Niswander LA (2005) Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132: 3103–3111PubMedCrossRefGoogle Scholar
  48. 48.
    Lucas BS, Aaron W, An S, Austin RJ, Brown M, Chan H, Chong A, Hungate R, Huang T, Jiang B, et al. (2010) Design of 1-piperazinyl-4-arylphthalazines as potent Smoothened antagonists. Bioorg Med Chem Lett 20: 3618–3622PubMedCrossRefGoogle Scholar
  49. 49.
    Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K, Beachy PA (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111: 63–75PubMedCrossRefGoogle Scholar
  50. 50.
    Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384: 176–179PubMedCrossRefGoogle Scholar
  51. 51.
    Mich JK, Blaser H, Thomas NA, Firestone AJ, Yelon D, Raz E, Chen JK (2009) Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Dev Biol 328: 342–354PubMedCrossRefGoogle Scholar
  52. 52.
    Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed JC, Mehlen P (2009) The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol 11: 739–746PubMedCrossRefGoogle Scholar
  53. 53.
    Miller-Moslin K, Peukert S, Jain R, McEwan M, Karki R, Llamas L, Yusuff N, He F, Li Y, Sun Y, et al. (2009) 1-amino-4-benzylphthalazines as orally bioavailable smoothened antagonists with antitumor activity. J Med Chem 52: 3954–3968PubMedCrossRefGoogle Scholar
  54. 54.
    Mullauer FB, Kessler JH, Medema JP (2010) Betulinic acid, a natural compound with potent anticancer effects. Anticancer Drugs 21, 215–227PubMedCrossRefGoogle Scholar
  55. 55.
    Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernández-Zapico ME, Hanahan D (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23: 24–36PubMedCrossRefGoogle Scholar
  56. 56.
    Ochoa B, Syn WK, Delgado I, Karaca GF, Jung Y, Wang J, Zubiaga AM, Fresnedo O, Omenetti A, Zdanowicz M, et al. (2010) Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51: 1712–1723PubMedCrossRefGoogle Scholar
  57. 57.
    Pan Y, Bai CB, Joyner AL, Wang B (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26: 3365–3377PubMedCrossRefGoogle Scholar
  58. 58.
    Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D (2010) Discovery of NVP-LDE225, a Potent and Selective Smoothened Antagonist. ACS Med Chem 1 (3): 130–134CrossRefGoogle Scholar
  59. 59.
    Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435: 58–65PubMedCrossRefGoogle Scholar
  60. 60.
    Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274: 255–259PubMedCrossRefGoogle Scholar
  61. 61.
    Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58: 1798–1803PubMedGoogle Scholar
  62. 62.
    Riobo NA, Haines GM, Emerson CP (2006) Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 66: 839–845PubMedCrossRefGoogle Scholar
  63. 63.
    Riobo NA, Lu K, Ai X, Haines GM, Emerson CP (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA 103: 4505–4510PubMedCrossRefGoogle Scholar
  64. 64.
    Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, Gould SE, Guichert O, Gunzner JL, Halladay J, et al. (2009) GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 19: 5576–5581PubMedCrossRefGoogle Scholar
  65. 65.
    Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, et al. (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76: 761–775PubMedCrossRefGoogle Scholar
  66. 66.
    Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14: 357–360PubMedCrossRefGoogle Scholar
  67. 67.
    Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317: 372–376PubMedCrossRefGoogle Scholar
  68. 68.
    Rohatgi R, Milenkovic L, Corcoran RB, Scott MP (2009) Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA 106: 3196–3201PubMedCrossRefGoogle Scholar
  69. 69.
    Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, et al. (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptcl(+/−)p53(−/−) mice. Cancer Cell 6: 229–240PubMedCrossRefGoogle Scholar
  70. 70.
    Rominger CM, Bee W-LT, Copeland RA, Davenport EA, Gilmartin A, Gontarek R, Hornberger KR, Kallal LA, Lai Z, Lawrie K, et al. (2009) Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J Pharmacol Exp Ther 329: 995–1005PubMedCrossRefGoogle Scholar
  71. 71.
    Ruegg UT, Burgess GM (1989) Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci 10: 218–220PubMedCrossRefGoogle Scholar
  72. 72.
    St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol 8: 1058–1068PubMedCrossRefGoogle Scholar
  73. 73.
    Stanton B, Peng L, Maloof N, Nakai K, Wang X, Duffner J, Taveras K, Hyman J, Lee S, Koehler A, et al. (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 5: 154–156PubMedCrossRefGoogle Scholar
  74. 74.
    Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A, Ericson J, Toftgard R, Teglund S (2006) Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10: 187–197PubMedCrossRefGoogle Scholar
  75. 75.
    Taipale J, Chen J, Cooper M, Wang B, Mann R, Milenkovic L, Scott M, Beachy P (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406: 1005–1009PubMedCrossRefGoogle Scholar
  76. 76.
    Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, et al. (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31: 306–310PubMedCrossRefGoogle Scholar
  77. 77.
    Teglund S, Toftgard R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805: 181–208PubMedGoogle Scholar
  78. 78.
    Tenzen T, Allen BL, Cole F, Kang JS, Krauss RS, McMahon AP (2006) The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell 10: 647–656PubMedCrossRefGoogle Scholar
  79. 79.
    The I, Bellaiche Y, Perrimon N (1999) Hedgehog movement is regulated through tout ­velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell 4: 633–639PubMedCrossRefGoogle Scholar
  80. 80.
    Tremblay M, Lescarbeau A, Grogan M, Tan E, Lin G, Austad B, Yu L, Behnke M, Nair S, Hagel M, et al. (2009) Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52: 4400–4418PubMedCrossRefGoogle Scholar
  81. 81.
    Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, et al. (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361: 1164–1172PubMedCrossRefGoogle Scholar
  82. 82.
    Vorechovský I, Tingby O, Hartman M, Strömberg B, Nister M, Collins VP, Toftgård R (1997) Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene 15: 361–366PubMedCrossRefGoogle Scholar
  83. 83.
    Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100: 423–434PubMedCrossRefGoogle Scholar
  84. 84.
    Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422: 313–317PubMedCrossRefGoogle Scholar
  85. 85.
    Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H, Kon C, Gatchalian C, Porter JA, Rubin LL, et al. (2003) Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100: 4616–4621PubMedCrossRefGoogle Scholar
  86. 86.
    Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, et al. (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–92PubMedCrossRefGoogle Scholar
  87. 87.
    Yang Y, Guillot P, Boyd Y, Lyon MF, McMahon AP (1998) Evidence that preaxial polydactyly in the Doublefoot mutant is due to ectopic Indian Hedgehog signaling. Development 125: 3123–3132PubMedGoogle Scholar
  88. 88.
    Yang H, Xiang J, Wang N, Zhao Y, Hyman J, Li S, Jiang J, Chen J, Yang Z, Lin S (2009) Converse conformational control of smoothened activity by structurally related small molecules. J Biol Chem 284: 20876–20884PubMedCrossRefGoogle Scholar
  89. 89.
    Yao S, Lum L, Beachy P (2006) The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125: 343–357PubMedCrossRefGoogle Scholar
  90. 90.
    Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, et al. (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455: 406–410PubMedCrossRefGoogle Scholar
  91. 91.
    Yauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, et al. (2009) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326: 572–574PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang X, Harrington N, Moraes RC, Wu MF, Hilsenbeck SG, Lewis MT (2009) Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res Treat 115: 505–521PubMedCrossRefGoogle Scholar
  93. 93.
    Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, et al. (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458: 776–779PubMedCrossRefGoogle Scholar
  94. 94.
    Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ, May WA (2008) The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 27: 3282–3291PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Systems BiologyStanford University School of MedicineStanfordUSA

Personalised recommendations