Locomotion Interfaces

  • Hiroo Iwata


A locomotion interface is a device that creates an artificial sensation of physical walking. It should ideally be equipped with three functions: (1) The creation of a sense of walking while the true position of its user is preserved, (2) Allowing the walker to change bearing direction, (3) The simulation of uneven walking surfaces. This chapter categorizes and describes four different methods for the design and implementation of such interfaces: Sliding shoes, Treadmills, Foot-pads, and Robotic tiles. It discusses related technical issues and potential applications.


Locomotion interface Walking Virtual environment Virtual reality Treadmill Walking-in-place 


  1. 1.
    Bakker NH, Werkhoven PJ, Passenier PO (1998) Aiding orientation in virtual environments with proprioceptive feedback. In: Proceedings of the IEEE 1998 virtual reality annual international symposium, pp 28–33Google Scholar
  2. 2.
    Brooks FP Jr (1986) A dynamic graphics system for simulating virtual buildings. In: Proceedings of the 1986 workshop on interactive 3D graphics, Chapel Hill, NC, ACM, New York, Oct 1986, pp 9–21Google Scholar
  3. 3.
    Chance SS, Gaunet F, Beall AC, Loomis JM (1998) Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence 7(2):168–178Google Scholar
  4. 4.
    Christensen R, Hollerbach JM, Xu Y, Meek S (1998) Inertial force feedback for a locomotion interface. In: Proceedings of the ASME dynamic systems and control division, DSC, vol 64, pp 119–126Google Scholar
  5. 5.
    Darken R, Allard T, Achille L (1998) Spatial orientation and wayfinding in large-scale virtual space: an introduction. Presence 7(2):101–107CrossRefGoogle Scholar
  6. 6.
    Darken R, Cockayne W, Carmein D (1997) The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of UIST’97, pp 213–222Google Scholar
  7. 7.
    Iwata H (1990) Artificial reality for walking about large scale virtual space. Hum Interface News Rep 5(1):49–52 (in Japanese)Google Scholar
  8. 8.
    Iwata H, Matsuda K (1992) Haptic walkthrough simulator: its design and application to studies on cognitive map. In: Proceedings of ICAT’92, pp 185–192Google Scholar
  9. 9.
    Iwata H, Fujii T (1996) Virtual perambulator: a novel interface device for locomotion in virtual environment. In: Proceedings of the IEEE 1996 virtual reality annual international symposium, pp 60–65Google Scholar
  10. 10.
    Iwata H (1999) Walking about virtual space on an infinite floor. In: Proceedings of the IEEE virtual reality’99, pp 236–293Google Scholar
  11. 11.
    Iwata H, Yoshida Y (1999) Path reproduction tests using a torus treadmill. Presence 8(6):587–597CrossRefGoogle Scholar
  12. 12.
    Iwata H, Yano H, Nakaizumi F (2001) Gait Master: a versatile locomotion interface for uneven virtual terrain. In: Proceedings of IEEE virtual reality 2001 conference, pp 131–137Google Scholar
  13. 13.
    Iwata H (2004) Touching and walking; issues in haptic interface. Keynote lecture of EuroHapticsGoogle Scholar
  14. 14.
    Iwata H, Yano H, Fukushima H, Noma H (2005) CirculaFloor: a locomotion interface using circulation of movable tiles. In: Proceedings of VR2005, pp 223–230Google Scholar
  15. 15.
    Iwata H, Yano H, Tomioka H (2006) Powered shoes. In: SIGGRAPH 2006 conference DVDGoogle Scholar
  16. 16.
    Iwata H, Yano H, Tomiyoshi M (2006) String walker. SIGGRAPH 2007 conference DVDGoogle Scholar
  17. 17.
    Loomis JM, Beall AC, Klatzky RL, Golledge RG, Phibeck JW (1995) Evaluating the sensory inputs to path integration. Paper presented at the psychonomic society meeting, Los Angels, CA, 10–12 Nov 1995Google Scholar
  18. 18.
    Lorenzo M et al (1995) OSIRIS. In: SIGGRAPH’95 visual proceedings, p 129Google Scholar
  19. 19.
    Noma H, Sugihara T, Miyasato T (2000) Development of ground surface simulator for tel-E-merge system. In: Proceedings of IEEE virtual reality, pp 217–224Google Scholar
  20. 20.
    Nagamori A, Wakabayashi K, Ito M (2005) The ball array treadmill: a locomotion interface for virtual world. In: Proceedings of the IEEE VR2005Google Scholar
  21. 21.
    Poston R et al (1997) A whole body kinematic display for virtual reality applications. In: Proceedings of the IEEE international conference on robotics and automation, pp 3006–3011Google Scholar
  22. 22.
    Prat DR et al (1994) Insertion of an articulated human into a networked virtual environment. In: Proceedings of the 1994 AI, simulation, and planning in high autonomy systems conference, pp 7–9Google Scholar
  23. 23.
    Ruddle RA, Lessels S (2009) The benefits of using a walking interface to navigate virtual environments. ACM Trans Comput Hum Interact 16(1):1–18CrossRefGoogle Scholar
  24. 24.
    Schmidt H et al (2005) HapticWalker—a novel haptic foot device. ACM Trans Appl Percept 2(2):166–180Google Scholar
  25. 25.
    Suma EA, Finkelstein SL, Reid M, Babu V (2010) Evaluation of the cognitive effects of travel technique in complex real and virtual environments. IEEE Trans Vis Comput Graph 16(4):690–702CrossRefGoogle Scholar
  26. 26.
    Stevens SS (1957) On the psychological law. Psychol Rev 64(3):153–181CrossRefGoogle Scholar
  27. 27.
    Souman JL, Robuffo Giordano P, Schwaiger M, Frissen I, Thümmel T, Ulbrich H, De Luca A, Bülthoff HH, Ernst M (2011) CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. Trans Appl Percept 8:1-22Google Scholar
  28. 28.
    Souman JL, Robuffo Giordano P, Frissen I, Luca AD, Ernst MO (2010) Making virtual walking real: perceptual evaluation of a new treadmill control algorithm. Trans Appl Percept 7(2:11) 1–14Google Scholar
  29. 29.
    Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, Brooks FP (1999) Walking> walking-in-place> flying, in virtual environments. In: Proceedings of the SIGGRAPH’99, pp 359–364Google Scholar
  30. 30.
    Ware C, Slipp L (1991) Using velocity control to navigate 3D graphical environments: a comparison of three interfaces. In: Proceedings of the human factor society 35th annual meeting, pp 300–304Google Scholar
  31. 31.
    Witmer BG, Bailey JH, Knerr BW, Parsons KC (1996) Virtual spaces and real world places: transfer of route knowledge. Int J Hum Comput Stud 45:413–428CrossRefGoogle Scholar
  32. 32.
    Yamao T, Ishida S, Ota S, Kaneko F (1996) Formal safety assesment—research project on quantification of risk on lives, MSC67/INF.9 IMO information paperGoogle Scholar
  33. 33.
    Yano H, Masuda T, Nakajima Y, Tanaka N, Tamefusa S, Saitou H, Iwata H (2008) Development of a gait rehabilitation system with a spherical immersive projection display. J Robot Mechatron 12(6):836–845Google Scholar
  34. 34.
    Yano H, Tamefusa S, Tanaka N, Saitou H, Iwata H (2010) Gait rehabilitation system for stair climbing and descending. Proc Haptics 2010:393–400Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Virtual Reality LaboratoryDepartment of Intelligent Interaction Technologies Tsukuba Japan

Personalised recommendations