Skip to main content

Locomotion Interfaces

  • Chapter
  • First Online:

Abstract

A locomotion interface is a device that creates an artificial sensation of physical walking. It should ideally be equipped with three functions: (1) The creation of a sense of walking while the true position of its user is preserved, (2) Allowing the walker to change bearing direction, (3) The simulation of uneven walking surfaces. This chapter categorizes and describes four different methods for the design and implementation of such interfaces: Sliding shoes, Treadmills, Foot-pads, and Robotic tiles. It discusses related technical issues and potential applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bakker NH, Werkhoven PJ, Passenier PO (1998) Aiding orientation in virtual environments with proprioceptive feedback. In: Proceedings of the IEEE 1998 virtual reality annual international symposium, pp 28–33

    Google Scholar 

  2. Brooks FP Jr (1986) A dynamic graphics system for simulating virtual buildings. In: Proceedings of the 1986 workshop on interactive 3D graphics, Chapel Hill, NC, ACM, New York, Oct 1986, pp 9–21

    Google Scholar 

  3. Chance SS, Gaunet F, Beall AC, Loomis JM (1998) Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence 7(2):168–178

    Google Scholar 

  4. Christensen R, Hollerbach JM, Xu Y, Meek S (1998) Inertial force feedback for a locomotion interface. In: Proceedings of the ASME dynamic systems and control division, DSC, vol 64, pp 119–126

    Google Scholar 

  5. Darken R, Allard T, Achille L (1998) Spatial orientation and wayfinding in large-scale virtual space: an introduction. Presence 7(2):101–107

    Article  Google Scholar 

  6. Darken R, Cockayne W, Carmein D (1997) The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of UIST’97, pp 213–222

    Google Scholar 

  7. Iwata H (1990) Artificial reality for walking about large scale virtual space. Hum Interface News Rep 5(1):49–52 (in Japanese)

    Google Scholar 

  8. Iwata H, Matsuda K (1992) Haptic walkthrough simulator: its design and application to studies on cognitive map. In: Proceedings of ICAT’92, pp 185–192

    Google Scholar 

  9. Iwata H, Fujii T (1996) Virtual perambulator: a novel interface device for locomotion in virtual environment. In: Proceedings of the IEEE 1996 virtual reality annual international symposium, pp 60–65

    Google Scholar 

  10. Iwata H (1999) Walking about virtual space on an infinite floor. In: Proceedings of the IEEE virtual reality’99, pp 236–293

    Google Scholar 

  11. Iwata H, Yoshida Y (1999) Path reproduction tests using a torus treadmill. Presence 8(6):587–597

    Article  Google Scholar 

  12. Iwata H, Yano H, Nakaizumi F (2001) Gait Master: a versatile locomotion interface for uneven virtual terrain. In: Proceedings of IEEE virtual reality 2001 conference, pp 131–137

    Google Scholar 

  13. Iwata H (2004) Touching and walking; issues in haptic interface. Keynote lecture of EuroHaptics

    Google Scholar 

  14. Iwata H, Yano H, Fukushima H, Noma H (2005) CirculaFloor: a locomotion interface using circulation of movable tiles. In: Proceedings of VR2005, pp 223–230

    Google Scholar 

  15. Iwata H, Yano H, Tomioka H (2006) Powered shoes. In: SIGGRAPH 2006 conference DVD

    Google Scholar 

  16. Iwata H, Yano H, Tomiyoshi M (2006) String walker. SIGGRAPH 2007 conference DVD

    Google Scholar 

  17. Loomis JM, Beall AC, Klatzky RL, Golledge RG, Phibeck JW (1995) Evaluating the sensory inputs to path integration. Paper presented at the psychonomic society meeting, Los Angels, CA, 10–12 Nov 1995

    Google Scholar 

  18. Lorenzo M et al (1995) OSIRIS. In: SIGGRAPH’95 visual proceedings, p 129

    Google Scholar 

  19. Noma H, Sugihara T, Miyasato T (2000) Development of ground surface simulator for tel-E-merge system. In: Proceedings of IEEE virtual reality, pp 217–224

    Google Scholar 

  20. Nagamori A, Wakabayashi K, Ito M (2005) The ball array treadmill: a locomotion interface for virtual world. In: Proceedings of the IEEE VR2005

    Google Scholar 

  21. Poston R et al (1997) A whole body kinematic display for virtual reality applications. In: Proceedings of the IEEE international conference on robotics and automation, pp 3006–3011

    Google Scholar 

  22. Prat DR et al (1994) Insertion of an articulated human into a networked virtual environment. In: Proceedings of the 1994 AI, simulation, and planning in high autonomy systems conference, pp 7–9

    Google Scholar 

  23. Ruddle RA, Lessels S (2009) The benefits of using a walking interface to navigate virtual environments. ACM Trans Comput Hum Interact 16(1):1–18

    Article  Google Scholar 

  24. Schmidt H et al (2005) HapticWalker—a novel haptic foot device. ACM Trans Appl Percept 2(2):166–180

    Google Scholar 

  25. Suma EA, Finkelstein SL, Reid M, Babu V (2010) Evaluation of the cognitive effects of travel technique in complex real and virtual environments. IEEE Trans Vis Comput Graph 16(4):690–702

    Article  Google Scholar 

  26. Stevens SS (1957) On the psychological law. Psychol Rev 64(3):153–181

    Article  Google Scholar 

  27. Souman JL, Robuffo Giordano P, Schwaiger M, Frissen I, Thümmel T, Ulbrich H, De Luca A, Bülthoff HH, Ernst M (2011) CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. Trans Appl Percept 8:1-22

    Google Scholar 

  28. Souman JL, Robuffo Giordano P, Frissen I, Luca AD, Ernst MO (2010) Making virtual walking real: perceptual evaluation of a new treadmill control algorithm. Trans Appl Percept 7(2:11) 1–14

    Google Scholar 

  29. Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, Brooks FP (1999) Walking> walking-in-place> flying, in virtual environments. In: Proceedings of the SIGGRAPH’99, pp 359–364

    Google Scholar 

  30. Ware C, Slipp L (1991) Using velocity control to navigate 3D graphical environments: a comparison of three interfaces. In: Proceedings of the human factor society 35th annual meeting, pp 300–304

    Google Scholar 

  31. Witmer BG, Bailey JH, Knerr BW, Parsons KC (1996) Virtual spaces and real world places: transfer of route knowledge. Int J Hum Comput Stud 45:413–428

    Article  Google Scholar 

  32. Yamao T, Ishida S, Ota S, Kaneko F (1996) Formal safety assesment—research project on quantification of risk on lives, MSC67/INF.9 IMO information paper

    Google Scholar 

  33. Yano H, Masuda T, Nakajima Y, Tanaka N, Tamefusa S, Saitou H, Iwata H (2008) Development of a gait rehabilitation system with a spherical immersive projection display. J Robot Mechatron 12(6):836–845

    Google Scholar 

  34. Yano H, Tamefusa S, Tanaka N, Saitou H, Iwata H (2010) Gait rehabilitation system for stair climbing and descending. Proc Haptics 2010:393–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iwata, H. (2013). Locomotion Interfaces. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds) Human Walking in Virtual Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8432-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8432-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8431-9

  • Online ISBN: 978-1-4419-8432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics