Sensing Human Walking: Algorithms and Techniques for Extracting and Modeling Locomotion

Chapter

Abstract

This chapter reports the most popular methods used to evaluate the main properties of human walking. We will mainly focus on: global parameters (such as step length, frequency, gait asymmetry and regularity), kinematic parameters (such as joint angles depending on time), dynamic values (such as the ground reaction force and the joint torques) and muscle activity (such as muscle tension). A large set of sensors have been introduced in order to analyze human walking in biomechanics and other connected domains such as robotics, human motion sciences, computer animation... Among all these sensors, we will focus on: mono-point sensors (such as accelerometers), multi-point sensors (such as flock of sensors, opto-electronic systems and video analysis), and dynamic sensors (such as force plates or electromyographic sensors). For the most popular systems, we will describe the most popular methods and algorithms used to compute the parameters described above. All along the chapter we will explain how these algorithms could provide original methods for helping people to design natural navigation in VR.

Keywords

Motion analysis Gait analysis Motion sensors Gait parameters Walking Biomechanics Sensory information 

References

  1. 1.
    Amarantini D, Rao G, Berton E (2010) A two-step EMG-and-optimization process to estimate muscle force during dynamic movement. J Biomech 43(9):1827–1830CrossRefGoogle Scholar
  2. 2.
    Auvinet B, Berrut G, Touzard C, Moutel L, Collet N, Chaleil D, Barrey E (2002) Reference data for normal subjects obtained with an accelerometric device. Gait Posture 16:124–134CrossRefGoogle Scholar
  3. 3.
    Bodenheimer B, Rose C, Rosenthal S, Pella J (1997) The process of motion capture: dealing with the data. In: Thalmann D, van de Panne M (eds) Eurographics workshop on computer animation and, simulation. Springer-Verlag, Wien, pp 3–18Google Scholar
  4. 4.
    Brault S, Bideau B, Craig C, Kulpa R (2010) Balancing deceit and disguise: how to successfully fool the defender in a 1 versus 1 situation in rugby. Hum Mov Sci 29(3):412–425CrossRefGoogle Scholar
  5. 5.
    Chang LY, Pollard NS (2007) Constrained least-squares optimization for robust estimation of center of rotation. J Biomech 40:1392–1400CrossRefGoogle Scholar
  6. 6.
    Delp SL (1990) Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. PhD thesis, Stanford University, Stanford, CaliforniaGoogle Scholar
  7. 7.
    Ehrig RM, Taylor GN, Duda WR, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39:2798–2809CrossRefGoogle Scholar
  8. 8.
    Faure F, Debunne G, Cani-Gascuel MP, Multon F (1997) Dynamic analysis of human walking (1997). In: Proceedings of eurographics workshop on computer animation and, simulation, pp 95–107Google Scholar
  9. 9.
    Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35:87–93CrossRefGoogle Scholar
  10. 10.
    Herda L, Fua P, Plaenkers R, Boulic R, Thalmann D (2001) Using skeleton-based tracking to increase the reliability of optical motion capture. Hum Mov Sci J 20(3):313–341CrossRefGoogle Scholar
  11. 11.
    Kavanagh J, Barett R, Morrison R (2005) Age-related differences in head and trunk coordination during walking. Hum Mov Sci 24:574–587CrossRefGoogle Scholar
  12. 12.
    Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32(1):99–103CrossRefGoogle Scholar
  13. 13.
    Lécuyer A, Marchal M, Hamelin A, Wolinski D, Fontana F, Civolani M, Papetti S, Serafin S (2011) Shoes-your-style: changing sound of footsteps to create new walking experiences. In: Proceedings of workshop on sound and music computing for human-computer interaction, CHItaly, Alghero, 13–16 Sept 2011Google Scholar
  14. 14.
    Lee SJ, Hidler J (2007) Biomechanics of overground versus treadmill walking in healthy individuals. J Appl Physiol 104(3):747–755Google Scholar
  15. 15.
    Lu TW, O’connor JJ (1999) Bone position estimation from skin marker coordinates using global optimisation with joint constraints. J Biomech 32(2):129–134CrossRefGoogle Scholar
  16. 16.
    Luh J, Walker M, Paul R (1980) On-line computational scheme for mechanical manipulators. Trans ASME J Dyn Syst Meas Contr 102(2):69–76MathSciNetCrossRefGoogle Scholar
  17. 17.
    Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320Google Scholar
  18. 18.
    Makshous M (1999) Improvements, validation and adaptation of a shoulder model. PhD thesis, Chalmers University of Technology, GöteborgGoogle Scholar
  19. 19.
    Marchal M, Pettré J, Lécuyer A (2011) Joyman: a human-scale joystick for navigating in virtual worlds. In: Proceedings of IEEE symposium on 3D user, interface 3DUI’11, pp 19–26Google Scholar
  20. 20.
    Marey EJ (1873) La machine animale, locomotion terrestre et aérienne. Germer Baillère, ParisGoogle Scholar
  21. 21.
    Menz H, Lord S, Fitzpatrick R (2003) Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 18(1):35–46CrossRefGoogle Scholar
  22. 22.
    Molet T, Boulic R, Thalmann D (1999) Human motion capture driven by orientation measurements. Presence 8:187–203CrossRefGoogle Scholar
  23. 23.
    Nigg BM, Herzog W (1999) Biomechanics of the musculo-skeletal system. Wiley, New York, p 349Google Scholar
  24. 24.
    Olivier AH, Crétual A (2007) Velocity/curvature relations along a single turn in human locomotion. Neurosci Lett 412(2):148–153CrossRefGoogle Scholar
  25. 25.
    Orendurff M, Segal A, Berge J, Flick K, Spanier D, Klute G (2006) The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture 23(1):106–111CrossRefGoogle Scholar
  26. 26.
    Pettré J, Marchal M, Siret O, de la Rivière J-B, Lécuyer A (2011) Joyman: an immersive and entertaining interface for virtual locomotion. ACM SIGGRAPH Asia emerging technologies. Hong-Kong, 12–15 Dec 2011Google Scholar
  27. 27.
    Pontonnier C, Dumont G (2010) From motion capture to muscle forces aiming at improving ergonomics of working stations. Virtual Phys Prototyp 5:113–122CrossRefGoogle Scholar
  28. 28.
    Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various tasks in humans. II.Patients with bilateral vestibular deficits. Exp Brain Res 85(1):208–217CrossRefGoogle Scholar
  29. 29.
    Reed M, Manary M, Schneider L (1999) Methods for measuring and representing automobile occupant posture. In: Proceedings of international congress and exposition, Detroit, Michigan, March 1–4Google Scholar
  30. 30.
    Sadeghi H (2003) Local or global asymmetry in gait of people without im-pairments. Gait Posture 17(3):197–204CrossRefGoogle Scholar
  31. 31.
    Schellenbach M, Lövdén M, Verrel J, Krüger A, Lindenberger U (2010) Adult age differences in familiarization to treadmill walking within virtual environments. Gait Posture 31:295–299CrossRefGoogle Scholar
  32. 32.
    Sereig A, Arvikar R (1989) Biomechanical analysis of the musculoskeletal structure for medicine and sports. J Anat 167:243–244Google Scholar
  33. 33.
    Silaghi MC, Plaenkers R, Boulic R, Fua P, Thalmann D (1998) Local and global skeleton fitting techniques for optical motion capture. In: Magnenat Thalmann N, Thalmann D (eds) Modeling and motion capture techniques for virtual environments, lecture notes in artificial intelligence, No1537, CAPTECH 1998. Springer, Geneva, pp 26–40Google Scholar
  34. 34.
    Taylor M, Dabnichki P, Strike S (2005) A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci 24(4):558–573CrossRefGoogle Scholar
  35. 35.
    Terziman L, Lécuyer A, Hillaire S, Wiener J (2009) Can camera motions improve the perception of traveled distance in virtual environments? In: IEEE international conference on virtual reality (IEEE VR), Lafayette, USGoogle Scholar
  36. 36.
    Terziman L, Marchal M, Emily M, Multon F, Arnaldi A, Lécuyer A (2010) Shake-your-head: revisiting walking-in-place for desktop virtual reality. In: Proceedings of the ACM symposium on virtual reality software and technology, Hong Kong, pp 27–34Google Scholar
  37. 37.
    Terziman L, Marchal M, Multon F, Arnaldi B, Lécuyer A (2012) The king-kong effects: improving sensation of walking in VR with visual and tactile vibrations at each step. In: Proceedings of the IEEE symposium on 3D user, interfaces 2012, Orange County, USA, pp19–26Google Scholar
  38. 38.
    Vaughan CL, Davis BL, O’Connor JC (1992) Dynamics of human gait. Human kinetics. Champaign, IllinoisGoogle Scholar
  39. 39.
    Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima D, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548CrossRefGoogle Scholar
  40. 40.
    Wu G, van der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992CrossRefGoogle Scholar
  41. 41.
    Yin k, Loken k, van de Panne M (2007) SIMBICON: simple biped locomotion control. ACM Trans Graph 26(3):Article 105CrossRefGoogle Scholar
  42. 42.
    Zordan VB, Hodgins JK (1999) Tracking and modifying upper-body human motion data with dynamic simulation. In: Computer animation and simulation ’99, eurographics, pp 13–22Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University Rennes2 RennesFrance

Personalised recommendations