Displays and Interaction for Virtual Travel

Chapter

Abstract

Virtual travel can be accomplished in many ways. In this chapter we review displays and interaction devices that can be utilized for virtual travel techniques. The types of display range from desktop to fully immersive and the types of interaction devices range from hand-held devices through to motion tracking systems. We give examples of different classes of device that are commonly used, as well as some more novel devices. We then give a general overview of travel tasks and explain how they can be realized through interaction devices.

Keywords

Travel Virtual environments Interaction Walking Tracking  Display Virtual reality Locomotion Walking-in-place 

References

  1. 1.
    Agrawala M, Beers AC, McDowall I, Fröhlich B, Bolas M, Hanrahan R (1997) The two-user Responsive Workbench: support for collaboration through individual views of a shared space. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley, New York, pp 327–332Google Scholar
  2. 2.
    Bowman D, Davis E, Badre A, Hodges L (1999) Maintaining spatial orientation during travel in an immersive virtual environment. Presence: Teleoper Virt Environ 8(6):618–631CrossRefGoogle Scholar
  3. 3.
    Bowman D, Johnson D, Hodges L (2001) Testbed evaluation of VE interaction techniques. Presence: Teleoper Virt Environ 10(1):75–95CrossRefGoogle Scholar
  4. 4.
    Bowman D, Wineman J, Hodges L, Allison D (1998) Designing animal habitats within an immersive VE. IEEE Comp Graph Appl 18(5):9–13CrossRefGoogle Scholar
  5. 5.
    Bowman D, Kruijff E, LaViola J, Poupyrev I (2004) 3D user interfaces: theory and practice. Addison Wesley Longman, Redwood CityGoogle Scholar
  6. 6.
    Cruz-Neira C, Sandin DJ, DeFanti TA (1993) Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques (SIGGRAPH ’93). ACM, New York, pp 135–142Google Scholar
  7. 7.
    Fairchild K, Hai L, Loo J, Hern N, Serra L (1993) The heaven and earth virtual reality: designing applications for novice users. In: Proceedings of IEEE virtual reality annual international symposium, 1993. IEEE, pp 47–53Google Scholar
  8. 8.
    Feiner S, MacIntyre B, Höllerer T, Webster T (1997) A touring machine: prototyping 3D mobile augmented reality systems for exploring the urban environment. In: Proceedings of first international symposium on wearable computers. IEEE, pp 74–81Google Scholar
  9. 9.
    Fernandes KJ, Raja V, Eyre J (2003) Cybersphere: the fully immersive spherical projection system. Commun. ACM 46(9):141–146Google Scholar
  10. 10.
    Fröhlich B, Plate J (2000) The cubic mouse: a new device for three-dimensional input. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’00). ACM, New York, pp 526–531Google Scholar
  11. 11.
    Hinckley K, Pausch R, Goble JC, Kassell NF (1994) Passive real-world interface props for neurosurgical visualization. In: Proceedings of ACM CHI’94 conference on human factors in computing systems. ACM New York, pp 452–458Google Scholar
  12. 12.
    Höllerer T, Kuchera-Morin J, Amatriain X, (2007) The allosphere: a large-scale immersive surround-view instrument. In: Proceedings of the 2007 workshop on emerging displays technologies: images and beyond: the future of displays and interacton (EDT ’07). ACM, New York, Article 3Google Scholar
  13. 13.
    Hutson M, Reiners D (2011) JanusVF: accurate navigation using SCAAT and virtual fiducials. IEEE Trans Visual Comput Graph 17(1):3–13CrossRefGoogle Scholar
  14. 14.
    Kato H, Billinghurst M (1999) Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM international workshop on augmented reality (IWAR 99), pp 85–94Google Scholar
  15. 15.
    Kulik A, Kunert A, Beck S, Reichel R, Blach R, Zink A, Fröhlich B (2011) C1x6: a stereoscopic six-user display for co-located collaboration in shared virtual environments. In: Proceedings of the 2011 SIGGRAPH Asia conference (SA ’11). ACM, New York, Article 188, 12 ppGoogle Scholar
  16. 16.
    LaViola J, Acevedo D, Keefe D, Zeleznik R (2001) Hands-free multi-scale navigation in virtual environments. In: Proceedings of the 2001 symposium on interactive 3D graphics (I3D ’01). ACM, New York, pp 9–15Google Scholar
  17. 17.
    Law AW, Peck B, Visell Y, Kry P, Cooperstock J (2008) A multi-modal floor-space for experiencing material deformation underfoot in virtual reality. In: Proceedings of IEEE international workshop on haptic audio visual environments and games. IEEE, pp 126–131Google Scholar
  18. 18.
    Mackinlay J, Card SK, Robertson GG (1990) A semantic analysis of the design space of input devices. Human-Comput Inter 5(2):145–190CrossRefGoogle Scholar
  19. 19.
    Mapes D, Moshell J (1995) A two-handed interface for object manipulation in virtual environments. Presence: Teleoper Virt Environ 4(4):403–416Google Scholar
  20. 20.
    McMahan R, Bowman D, Zielinski D, Brady R (2012) Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans Visual Comput Graph (Proc IEEE Virt Real) 18(4):626–633Google Scholar
  21. 21.
    Meyer K, Applewhite H (1992) A survey of position trackers. Presence: Teleoper Virt Environ 1(2):173–200Google Scholar
  22. 22.
    Mine M (1995) Virtual environment interaction techniques. UNC Chapel Hill CS DeptGoogle Scholar
  23. 23.
    Miguel MM, Ogawa T, Kiyokawa K, Takemura H (2007) A PDA-based see-through interface within an immersive environment. In: Proceedings of The 17th international conference on artificial reality and telexistence (ICAT 2007), pp 113–118Google Scholar
  24. 24.
    Mine M, Brooks F, Sequin C (1997) Moving objects in space: exploiting proprioception in virtual environment interaction. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley, New York, pp 19–26Google Scholar
  25. 25.
    Office of Naval Research (2012) Infantry immersion trainer. http://www.onr.navy.mil/Media-Center/Fact-Sheets/infantry-immersion-trainer.aspx, Retrieved July 2012
  26. 26.
    Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and Locomotion in Virtual Worlds via Flight into Hand-Held Miniature. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (SIGGRAPH ’95). ACM, New York, pp 399–400Google Scholar
  27. 27.
    Pettré J, Siret O, Marchal M, de la Rivire J-B, Lécuyer A (2011) Joyman: an immersive and entertaining interface for virtual locomotion. In SIGGRAPH Asia 2011 emerging technologies (SA ’11). ACM, New York, Article 22Google Scholar
  28. 28.
    Pierce J, Forsberg A, Conway M, Hong S, Zeleznik R, Mine M (1997) Image plane interaction techniques in 3D immersive environments. In: Proceedings of the 1997 symposium on interactive 3D graphics (I3D ’97). ACM, New York, 39-ffGoogle Scholar
  29. 29.
    Razzaque S, Swapp D, Slater M, Whitton M, Steed A (2002) Redirected walking in place. In: Proceedings of the workshop on virtual environments 2002 (EGVE ’02), Eurographics Association, Aire-la-Ville, Switzerland, pp 123–130Google Scholar
  30. 30.
    Slater M, Steed A, Chrysanthou Y (2001) Computer graphics and virtual environments: from realism to real-time. Addison-Wesley, New YorkGoogle Scholar
  31. 31.
    Slater M, Usoh M, Steed A (1995) Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans Comput-Human Inter 2(3):201–219CrossRefGoogle Scholar
  32. 32.
    Song D, Norman M (1993) Nonlinear interactive motion control techniques for virtual space navigation. In: Proceedings of IEEE virtual reality annual international symposium. IEEE, pp 111–117Google Scholar
  33. 33.
    Sutherland IE (1965) The ultimate display. Proc IFIP 65(2):506–508Google Scholar
  34. 34.
    Swapp D, Williams J, Steed A (2010) The implementation of a novel walking interface within an immersive display. In: Proceedings 2010. IEEE symposium on 3D user interfaces (3DUI). IEEE, pp 71–74Google Scholar
  35. 35.
    Szalavári Z, Gervautz M (1997) The personal interaction panel—a two-handed interface for augmented reality. Comput Graph Forum (Proceedings of EUROGRAPHICS’97. Budapest, Hungary) 16(3):335–346Google Scholar
  36. 36.
    Tamura H, Yamamoto H, Katayama A (2001) Mixed reality: future dreams seen at the border between real and virtual worlds. IEEE Comput Graph Appl 21(6):64–70CrossRefGoogle Scholar
  37. 37.
    Templeman JN, Sibert LE, Page RC, Denbrook PS (2009) Designing user interfaces for training dismounted infantry. In: Nicholson D, Schmorrow D, Cohn J (eds) Handbook of virtual environments for training and education, vol 2. Greenwood Publishing Group, Westport, pp 219–239Google Scholar
  38. 38.
    Usoh M, Arthur K, Whitton M, Bastos R, Steed A, Slater M, Brooks F (1999) Walking %3e Walking-in-place %3e flying. In: Virtual environments. Proceedings of the 26th annual conference on computer graphics and interactive techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley, New York, pp 359–364Google Scholar
  39. 39.
    Viega J, Conway MJ, Williams G, Pausch R (1996) 3D magic lenses. In: Proceedings of the 9th annual ACM symposium on user interface software and technology (UIST ’96). ACM, New York, pp 51–58Google Scholar
  40. 40.
    Ware C, Osborne S (1990) Exploration and virtual camera control in virtual three dimensional environments. In: Proceedings of the 1990 symposium on interactive 3D graphics (I3D ’90). ACM, New York, pp 175–183Google Scholar
  41. 41.
    Welch G (2002) Tracking bibliography. http://www.cs.unc.edu/~tracker/ref/biblio/index.html. Retrieved July 2012
  42. 42.
    Welch G, Bishop G, Vicci L, Brumback S, Keller K, Colucci D (1999) The HiBall tracker: high-performance wide-area tracking for virtual and augmented environments. In: Proceedings of the ACM symposium on virtual reality software and technology (VRST ’99). ACM, New York, pp 1–10Google Scholar
  43. 43.
    Welch G, Bishop G, Vicci L, Brumback S, Keller K, Colucci D (2001) High-performance wide-area optical tracking. Presence: Teleoper Virt Environ 10(1):1–21CrossRefGoogle Scholar
  44. 44.
    Welch G, Foxlin E (2002) Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput Graph Appl 22(6):24–38CrossRefGoogle Scholar
  45. 45.
    Wells M, Peterson B, Aten J (1996) The virtual motion controller: a sufficient-motion walking simulator. In: Proceedings of IEEE virtual reality annual international symposium. IEEE, pp 1–8Google Scholar
  46. 46.
    Wloka M, Greenfield E (1995) The virtual tricorder: a uniform interface for virtual reality. In: Proceedings of the 8th annual ACM symposium on User interface and software technology (UIST ’95). ACM, New York, pp 39–40Google Scholar
  47. 47.
    Zeleznik R, LaViola J, Feliz D, Keefe D (2002) Pop through button devices for VE navigation and interaction. In: Proceedings of IEEE virtual reality 2002. IEEE, pp 127–134Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.Center for Human Computer InteractionVirginia TechBlacksburgUSA

Personalised recommendations