Skip to main content

Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (“Vection”) Be Utilized?

  • Chapter
  • First Online:
Human Walking in Virtual Environments

Abstract

How can we convincingly simulate observer locomotion through virtual environments without having to allow for full physical observer movement? That is, how can we best utilize multi-modal stimulation to provide the compelling illusion of moving through simulated worlds while reducing the overall simulation effort? This chapter provides a review on the contribution and interaction of visual, auditory, vibrational, and biomechanical cues (e.g., walking) for self-motion perception and simulation in VR. We propose an integrative framework and discuss potential synergistic effects of perceptual and cognitive influences on self-motion perception in VEs. Based on this perspective, we envision a lean-and-elegant approach that utilizes multi-modal self-motion illusions and perceptual-cognitive factors in a synergistic manner to improve perceptual and behavioral effectiveness and reduce the demand for physical (loco-)motion interfaces to a more affordable level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Viewpoint jitter refers to a specific optic flow pattern that simulates the visual “jittering” effects of small head movements of the observer, similar to “camera shake”: For example, a constant, radially expanding optic flow pattern that simulates forward linear motion would get an additional jittering optic flow component on top if the visual effects of oscillating up-down head movements that occur during normal walking is added to the expanding optical flow field.

References

  1. Allison RS, Howard IP, Zacher JE (1999) Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room. Perception 28(3):299–306

    Article  Google Scholar 

  2. Andersen GJ (1986) Perception of self-motion—psychophysical and computational approaches. Psychol Bull 99(1):52–65

    Google Scholar 

  3. Andersen GJ, Braunstein ML (1985) Induced self-motion in central vision. J Exp Psychol Hum Percept Perform 11(2):122–132

    Article  Google Scholar 

  4. Ash A, Palmisano S, Allison RS (2012) Vection in depth during treadmill locomotion. J Vis. 12(9):181–181

    Google Scholar 

  5. Ash A, Palmisano S, Govan DG, Kim J (2011) Display lag and gain effects on vection experienced by active observers. Aviat Space Environ Med 82(8):763–769. doi:10.3357/ASEM.3026.2011

    Article  Google Scholar 

  6. Ash A, Palmisano S, Kim J (2011) Vection in depth during consistent and inconsistent multisensory stimulation. Perception 40(2):155–174. doi:10.1068/p6837

    Article  Google Scholar 

  7. Becker W, Nasios G, Raab S, Jürgens R (2002) Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Exp Brain Res 144(4):458–474

    Article  Google Scholar 

  8. Becker W, Raab S, Jürgens R (2002) Circular vection during voluntary suppression of optokinetic reflex. Exp Brain Res 144(4):554–557

    Article  Google Scholar 

  9. Berger DR, Schulte-Pelkum J, Bülthoff HH (2010) Simulating believable forward accelerations on a stewart motion platform. ACM Trans Appl Percept 7(1):1–27. doi:10.1145/1658349.1658354

    Article  Google Scholar 

  10. Berthoz A, Pavard B, Young LR (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection)—basic characteristics and visual-vestibular interactions. Exp Brain Res 23(5):471–489

    Google Scholar 

  11. Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: Only one provocative conflict? Brain Res Bull 47(5):481–487

    Google Scholar 

  12. Bles W, Dejong JMBV, Rasmussens JJ (1984) Postural and Oculomotor Signs in labyrinthine-defective subjects. Acta Oto-Laryngologica 96(s406):101–104

    Google Scholar 

  13. Bles W (1981) Stepping around: circular vection and Coriolis effects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, NJ, pp 47–61

    Google Scholar 

  14. Bles W, Kapteyn TS (1977) Circular vection and human posture .1. Does proprioceptive system play a role. Agressologie 18:325–328

    Google Scholar 

  15. Brandt T, Büchele W, Arnold F (1977) Arthrokinetic nystagmus and ego-motion sensation. Exp Brain Res 30(2):331–338. doi:10.1007/BF00237260

    Google Scholar 

  16. Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491

    Article  Google Scholar 

  17. Brandt T, Wist ER, Dichgans J (1975) Foreground and Background in Dynamic Spatial Orientation. Percept Psychophysics 17(5):497–503

    Article  Google Scholar 

  18. Bruggeman H, Piuneu VS, Rieser JJ, Pick HLJ (2009) Biomechanical versus inertial information: Stable individual differences in perception of self-rotation. J Exp Psychol Hum Percept Perform 35(5):1472–1480. doi:10.1037/a0015782

    Article  Google Scholar 

  19. Bubka A, Bonato F (2010) Natural visual-field features enhance vection. Perception 39(5):627–635. doi:10.1068/p6315

    Article  Google Scholar 

  20. Campos JL, Siegle JH, Mohler BJ, Bülthoff HH, Loomis JM (2009) Imagined self-motion differs from perceived self-motion: evidence from a novel continuous pointing method. PLoS ONE 4(11):e7793. doi:10.1371/journal.pone.0007793

    Article  Google Scholar 

  21. Cheung BSK, Howard IP, Money KE (1990) Visually-induced tilt during parabolic flights. Exp Brain Res 81(2):391–397. doi:10.1007/BF00228131

    Article  Google Scholar 

  22. Cheung BSK, Howard IP, Nedzelski JM, Landolt JP (1989) Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica 108(5):336. doi:10.3109/00016488909125537

    Article  Google Scholar 

  23. Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. Perception, handbook of sensory physiology vol VIII. Springer, Berlin, pp 756–804

    Google Scholar 

  24. DiZio P, Lackner JR (2002) Proprioceptive adaptation and aftereffects. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 751–771

    Google Scholar 

  25. Durgin FH, Gigone K, Scott R (2005) Perception of visual speed while moving. J Exp Psychol Hum Percept Perform 31(2):339–353. doi:10.1037/0096-1523.31.2.339

    Article  Google Scholar 

  26. Durgin FH, Pelah A, Fox LF, Lewis JY, Kane R, Walley KA (2005) Self-motion perception during locomotor recalibration: more than meets the eye. J Exp Psychol Hum Percept Perform 31(3):398–419

    Article  Google Scholar 

  27. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169

    Article  Google Scholar 

  28. Fischer MH, Kornmüller AE (1930) Optokinetisch ausgelöste Bewegungswahrnehmung und optokinetischer Nystagmus [Optokinetically induced motion perception and optokinetic nystagmus]. J für Psychol und Neurol 41:273–308

    Google Scholar 

  29. Frissen I, Campos JL, Souman JL, Ernst MO (2011) Integration of vestibular and proprioceptive signals for spatial updating. Exp Brain Res 212(2):163–176. doi:10.1007/s00221-011-2717-9

    Article  Google Scholar 

  30. Giannopulu I, Lepecq JC (1998) Linear-vection chronometry along spinal and sagittal axes in erect man. Perception 27(3):363–372

    Article  Google Scholar 

  31. Harm DL (2002) Motion sickness neurophysiology, physiological correlates, and treatment. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 637–661

    Google Scholar 

  32. Held R, Dichgans J, Bauer J (1975) Characteristics of moving visual scenes influencing spatial orientation. Vis Res 15(3):357–365. IN1. doi:10.1016/0042-6989(75)90083-8

    Google Scholar 

  33. von Helmholtz H (1866) Handbuch der physiologischen Optik. Voss, Leipzig, Germany

    Google Scholar 

  34. Hettinger LJ (2002) Illusory self-motion in virtual environments. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 471–492

    Google Scholar 

  35. Hettinger LJ, Berbaum KS, Kennedy RS, Dunlap WP, Nolan MD (1990) Vection and simulator sickness. Mil Psychol 2(3):171–181. doi:10.1007/978-1-4419-8432-6_4

    Article  Google Scholar 

  36. von der Heyde M, Riecke BE (2002) Embedding presence-related terminology in a logical and functional model (pp. 37–52). Presented at the Presence. Retrieved from http://edoc.mpg.de/39355

  37. Hollerbach JM (2002) Locomotion interfaces. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 239–254

    Google Scholar 

  38. Howard IP (1982) Human visual orientation. Wiley, Chichester, New York

    Google Scholar 

  39. Howard IP (1986) The perception of posture, self motion, and the visual vertical. In: Boff KR, Kaufman L, Thomas JP (eds) Sensory processes and perception, Handbook of human perception and performance. vol 1. Wiley, New York, pp 18.1–18.62

    Google Scholar 

  40. Howard IP, Childerson L (1994) The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception 23(7):753–762. doi:10.1068/p230753

    Article  Google Scholar 

  41. Howard IP, Heckmann T (1989) Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception 18(5):657–665. doi:10.1068/p180657

    Article  Google Scholar 

  42. Howard IP, Howard A (1994) Vection–the contributions of absolute and relative visual motion. Perception 23(7):745–751

    Article  Google Scholar 

  43. Howard IP, Jenkin HL, Hu G (2000) Visually-induced reorientation illusions as a function of age. Aviat Space Environ Med 71(9 Suppl):A87–91

    Google Scholar 

  44. Howard IP, Zacher JE, Allison RS (1998) Post-rotatory nystagmus and turning sensations after active and passive turning. J Vestib Res 8(4):299–312

    Article  Google Scholar 

  45. Ito H, Shibata I (2005) Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity. Vis Res 45(4):397–402. doi:10.1016/j.visres.2004.11.009

    Article  Google Scholar 

  46. Ji JTT, So RHY, Cheung RTF (2009) Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Hum Factors 51(5):739–751. doi:10.1177/0018720809349708

    Article  Google Scholar 

  47. Johansson G (1977) Studies on visual-perception of locomotion. Perception 6(4):365–376. doi:10.1068/p060365

    Article  MathSciNet  Google Scholar 

  48. Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res Equilibr Orientation 9(2):83–87

    Google Scholar 

  49. Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp Brain Res 174(3):528–543. doi:10.1007/s00221-006-0486-7

    Article  Google Scholar 

  50. Kennedy RS, Drexler JM, Compton DE, Stanney KM, Lanham DS, Harm DL (2003) Configural scoring of simulator sickness, cybersickness, and space adaptation syndrome: similarities and differences. In: Lawrence J Hettinger, Micheal W Hwas (eds) Virtual and adaptive environments: applications, implications, and human performance, issues, Lawrence Erlbaum Associates, USA, pp 247–278. http://www.amazon.com/Virtual-Adaptive-Environments-Applications-Implications/dp/080583107X/ref=sr_1_2?ie=UTF8&qid=1359862979&sr=8-2&keywords=Configural+scoring+of+simulator+sickness%2C+cybersickness%2C+and+space+adaptation+syndrome%3A#reader_080583107X

  51. Kitazaki M, Murata A, Onimaru S, Sato T (2008) Vection during walking: effects of vision-action direction congruency and visual jitter. Poster presented at the International Multisensory Research Forum, Hamburg, Germany

    Google Scholar 

  52. Kitazaki M, Onimaru S, Sato T (2010) Vection and action are incompatible. Presented at the 2nd IEEE VR 2010 workshop on perveptual illusions in virtual environments (PIVE). Waltham, USA, pp 22–23

    Google Scholar 

  53. Kitazaki M, Sato T (2003) Attentional modulation of self-motion perception. Perception 32(4):475–484. doi:10.1068/p5037

    Article  Google Scholar 

  54. Lackner JR (1977) Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviat Space Environ Med 48(2):129–131

    Google Scholar 

  55. Lackner JR, DiZio P (1988) Visual stimulation affects the perception of voluntary leg movements during walking. Perception 17(1):71–80. doi:10.1068/p170071

    Article  Google Scholar 

  56. Larsson P, Västfjäll D, Kleiner M (2004) Perception of self-motion and presence in auditory virtual environments. In: Proceedings of 7th annual workshop of presence, pp 252–258

    Google Scholar 

  57. Lepecq JC, Giannopulu I, Baudonniere PM (1995) Cognitive effects on visually induced body motion in children. Perception 24(4):435–449

    Article  Google Scholar 

  58. Lepecq JC, Jouen F, Dubon D (1993) The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception 22(1):49–60

    Article  Google Scholar 

  59. Loomis J, Knapp J (2003) Visual perception of egocentric distance in real and virtual environments. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications, and human performance issues. Lawrence Erlbaum, Mahwah, USA, pp 21–46

    Google Scholar 

  60. Mach E (1875) Grundlinien der Lehre von der Bewegungsempfindung. Engelmann, Leipzig, Germany

    Google Scholar 

  61. Mergner T, Becker W (1990) Perception of horizontal self-rotation: Multisensory and cognitive aspects. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, London, pp 219–263

    Google Scholar 

  62. Nakamura S (2006) Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vis Res 46(15):2344–2353. doi:10.1016/j.visres.2006.01.016

    Article  Google Scholar 

  63. Nakamura S (2008) Effects of stimulus eccentricity on vection reevaluated with a binocularly defined depth. Jpn Psychol Res 50(2):77–86. doi:10.1111/j.1468-5884.2008.00363.x

    Article  Google Scholar 

  64. Nakamura S (2010) Additional oscillation can facilitate visually induced self-motion perception: the effects of its coherence and amplitude gradient. Perception 39(3):320–329. doi:10.1068/p6534

    Article  Google Scholar 

  65. Nakamura S, Shimojo S (1999) Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception 28(7):893–902

    Article  Google Scholar 

  66. Nichols S, Patel H (2002) Health and safety implications of virtual reality: a review of empirical evidence. Appl Ergonomics 33(3):251–271. doi:10.1016/S0003-6870(02)00020-0

    Article  Google Scholar 

  67. Ohmi M, Howard IP (1988) Effect of stationary objects on illusory forward self-motion induced by a looming display. Perception 17(1):5–12. doi:10.1068/p170005

    Article  Google Scholar 

  68. Ohmi M, Howard IP, Landolt JP (1987) Circular vection as a function of foreground-background relationships. Perception 16(1):17–22

    Article  Google Scholar 

  69. Onimaru S, Sato T, Kitazaki M (2010) Veridical walking inhibits vection perception. J Vis 10(7):860. doi:10.1167/10.7.860

    Article  Google Scholar 

  70. Palmisano S (1996) Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Percept Psychophysics 58(8):1168–1176

    Article  Google Scholar 

  71. Palmisano S, Allison RS, Howard IP (2006) Illusory scene distortion occurs during perceived self-rotation in roll. Vis Res 46(23):4048–4058. doi:10.1016/j.visres.2006.07.020

    Article  Google Scholar 

  72. Palmisano S, Allison RS, Kim J, Bonato F (2011) Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing Perceiving 24(2):173–200. doi:10.1163/187847511X570817

    Article  Google Scholar 

  73. Palmisano S, Bonato F, Bubka A, Folder J (2007) Vertical display oscillation effects on forward vection and simulator sickness. Aviat Space Environ Med 78(10):951–956

    Article  Google Scholar 

  74. Palmisano S, Burke D, Allison RS (2003) Coherent perspective jitter induces visual illusions of self- motion. Perception 32(1):97–110

    Article  Google Scholar 

  75. Palmisano S, Chan AYC (2004) Jitter and size effects on vection are immune to experimental instructions and demands. Perception 33(8):987–1000

    Article  Google Scholar 

  76. Palmisano S, Gillam B (1998) Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception 27(9):1067–1077

    Article  Google Scholar 

  77. Palmisano S, Gillam BJ, Blackburn SG (2000) Global-perspective jitter improves vection in central vision. Perception 29(1):57–67

    Article  Google Scholar 

  78. Palmisano S, Keane S (2004) Effect of visual jitter on visual-vestibular interaction during vection. Aust J Psychol 56(Suppl. S):213

    Google Scholar 

  79. Post RB (1988) Circular vection is independent of stimulus eccentricity. Perception 17(6):737–744. doi:10.1068/p170737

    Article  Google Scholar 

  80. Presson CC, Montello DR (1994) Updating after rotational and translational body movements: coordinate structure of perspective space. Perception 23(12):1447–1455. doi:10.1068/p231447

    Article  Google Scholar 

  81. Prothero JD, Hoffman HG, Parker DE, Furness TA, Wells MJ (1995) Foreground/background manipulations affect presence. Proc Hum Factors Ergon Soc Ann Meet 39(21):1410–1414. doi:10.1177/154193129503902111

    Article  Google Scholar 

  82. Prothero JD, Parker DE (2003) A unified approach to presence and motion sickness. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications, and human performance issues. Lawrence Erlbaum, New York, pp 47–66

    Google Scholar 

  83. Riecke BE (2003) How far can we get with just visual information? Path integration and spatial updating studies in virtual reality. vol. 8, Berlin http://www.logos-verlag.de/cgi-bin/buch/isbn/0440

  84. Riecke BE (2006) Simple user-generated motion cueing can enhance self-motion perception (Vection) in virtual reality. In: Proceedings of the ACM symposium on virtual reality software and technology (VRST) Limassol, ACM, Cyprus, pp 104–107. doi:10.1145/1180495.1180517

  85. Riecke BE (2009) Cognitive and higher-level contributions to illusory self-motion perception (“vection”): does the possibility of actual motion affect vection? Jpn J Psychon Sci 28(1):135–139

    MathSciNet  Google Scholar 

  86. Riecke BE (2011) Compelling self-motion through virtual environments without actual self-motion–using self-motion illusions (“Vection”) to improve user experience in VR. In: Kim J-J (ed) Virtual reality, pp 149–176. doi:10.5772/13150. InTech. http://www.intechopen.com/articles/show/title/compelling-self-motion-through-virtual-environments-without-actual-self-motion-using-self-motion-ill

  87. Riecke BE, Feuereissen D (2012) To move or not to move: can active control and user-driven motion cueing enhance self-motion perception (“Vection”) in virtual reality? ACM symposium on applied perception SAP (accepted full paper) ACM. Los Angeles, USA, pp 1–8

    Google Scholar 

  88. Riecke BE, Feuereissen D, Rieser JJ (2009) Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Trans Appl Percept 6(3):1–22. doi:10.1145/1577755.1577763

    Article  Google Scholar 

  89. Riecke BE, Feuereissen D, Rieser JJ, McNamara TP (2011) Spatialized sound enhances biomechanically-induced self-motion illusion (vection). Proceedings of the 2011 annual conference on Human factors in computing systems, CHI ’11. ACM SIG.CHI, Vancouver, Canada, pp 2799–2802. http://doi.acm.org/10.1145/1978942.1979356

  90. Riecke BE, Feuereissen D, Rieser JJ, McNamara TP (2012) Self-motion illusions (Vection) in VR–are they good for anything? IEEE virtual reality 2012. Orange County, USA, pp 35–38: doi:10.1109/VR.2012.6180875

  91. Riecke BE, Schulte-Pelkum J, Avraamides MN, Bülthoff HH (2004) Enhancing the visually induced self-motion illusion (Vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual workshop presence 2004, pp 125–132. doi:10.1.1.122.5636

  92. Riecke BE, Schulte-Pelkum J, Avraamides MN, Heyde MVD, Bülthoff HH (2006) Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl Percept (TAP) 3(3):194–216. doi:10.1145/1166087.1166091

    Article  Google Scholar 

  93. Riecke BE, Schulte-Pelkum J,Caniard F (2006)Visually induced linear vection is enhanced by small physical accelerations. 7th international multisensory research forum (IMRF). Dublin, Ireland

    Google Scholar 

  94. Riecke BE, Schulte-Pelkum J, Caniard F, Bülthoff HH (2005a) Towards lean and elegant self-motion simulation in virtual reality. Proceedings of IEEE virtual reality 2005. Bonn, Germany, pp 131–138. http://doi.ieeecomputersociety.org/10.1109/VR.2005.83

  95. Riecke BE, Väljamäe A, Schulte-Pelkum J (2009) Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Trans Appl Percept 6(2):1–27

    Article  Google Scholar 

  96. Riecke BE, Västfjäll D, Larsson P, Schulte-Pelkum J (2005) Top-down and multi-modal influences on self-motion perception in virtual reality. Proceedings of HCI international 2005. Las Vegas, USA, pp 1–10. http://en.scientificcommons.org/20596227

  97. Rieser JJ (1989) Access to knowledge of spatial structure at novel points of observation. J Exp Psychol Learn Mem Cogn 15(6):1157–1165. doi:10.1037/0278-7393.15.6.1157

    Article  Google Scholar 

  98. Rieser JJ, Pick HL, Ashmead D, Garing AE (1995) Calibration of human locomotion and models of perceptual-motor organization. J Exp Psychol Hum Percept Perform 21(3):480–497

    Article  Google Scholar 

  99. Sasaki K, Seno T, Yamada Y, Miura K (2012) Emotional sounds influence vertical vection. Perception 41(7):875–877

    Article  Google Scholar 

  100. Schulte-Pelkum J (2007) Perception of self-motion: vection experiments in multi-sensory virtual environments (PhD thesis). Ruhr-Universität Bochum. http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/SchultePelkumJoerg/

  101. Schulte-Pelkum J, Riecke BE, von der Heyde M, Bülthoff HH (2003) Circular vection is facilitated by a consistent photorealistic scene. Talk presented at the presence 2003 Conference. Aalborg, Denmark

    Google Scholar 

  102. Seno T, Hasuo E, Ito H, Nakajima Y (2012) Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception 41(5):577–593

    Article  Google Scholar 

  103. Seno T, Ito H, Sunaga S (2009) The object and background hypothesis for vection. Vis Res 49(24):2973–2982. doi:10.1016/j.visres.2009.09.017

    Article  Google Scholar 

  104. Seno T, Ito H, Sunaga S (2011a) Inconsistent locomotion inhibits vection. Perception 40(6):747

    Article  Google Scholar 

  105. Seno T, Ito H, Sunaga S (2011b) Attentional load inhibits vection. Attention Percept Psychophysics 73(5):1467–1476. doi:10.3758/s13414-011-0129-3

    Article  Google Scholar 

  106. Seno T, Ogawa M, Ito H, Sunaga S (2011) Consistent air flow to the face facilitates vection. Perception 40(10):1237–1240

    Article  Google Scholar 

  107. Seno T, Palmisano S, Ito H, Sunaga S (2012) Vection can be induced without global-motion awareness. Perception 41(4):493–497. doi:10.1068/p7206

    Article  Google Scholar 

  108. Seno T, Yamada Y, lhaya, K (2011) Narcissistic people cannot be moved easily by visual stimulation. Perception 40(11):1390–1392. doi:10.1068/p7062

    Google Scholar 

  109. Siegle JH, Campos JL, Mohler BJ, Loomis JM, Bülthoff HH (2009) Measurement of instantaneous perceived self-motion using continuous pointing. Exp Brain Res 195(3):429–444. doi:10.1007/s00221-009-1805-6

    Article  Google Scholar 

  110. Slater M, Steed A, McCarthy J, Maringelli F (1998) The influence of body movement on subjective presence in virtual environments. Hum Factors 40(3):469–477

    Article  Google Scholar 

  111. Steinicke F, Bruder G, Hinrichs K, Jerald J, Frenz H, Lappe M (2009) Real walking through virtual environments by redirection techniques. J Virtual Reality Broadcast 6(2)

    Google Scholar 

  112. Trutoiu LC, Mohler BJ, Schulte-Pelkum J, Bülthoff HH (2009) Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Comput Graph 33(1):47–58. doi:10.1016/j.cag.2008.11.008

    Article  Google Scholar 

  113. Trutoiu LC, Streuber S, Mohler BJ, Schulte-Pelkum J, Bülthoff HH (2008) Tricking people into feeling like they are moving when they are not paying attention. Applied perception in graphics and visualization (APGV) 190–190. http://doi.acm.org/10.1145/1394281.1394319

  114. Urbantschitsch V (1897) Über Störungen des Gleichgewichtes und Scheinbewegungen. Z Ohrenheilk 31:234–294

    Google Scholar 

  115. van der Steen FAM (1998) Self-motion perception (PhD thesis). Technical University Delft, Netherlands

    Google Scholar 

  116. van der Steen FAM, Brockhoff PTM (2000) Induction and impairment of saturated yaw and surge vection. Percept Psychophysics 62(1):89–99

    Google Scholar 

  117. Väljamäe A (2007) Sound for multisensory motion simulators (PhD thesis). Chalmers University of Technology, Gothenburg, Sweden

    Google Scholar 

  118. Väljamäe A (2009) Auditorily-induced illusory self-motion: A review. Brain Res Rev 61(2):240–255. doi:10.1016/j.brainresrev.2009.07.001

    Article  Google Scholar 

  119. Väljamäe A, Alliprandini PMZ, Alais D, Kleiner M (2009) Auditory landmarks enhance circular vection in multimodal virtual reality. J Audio Eng Soc 57(3):111–120

    Google Scholar 

  120. Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2006) Vibrotactile enhancement of auditory induced self-motion and spatial presence. J Acoust Eng Soc 54(10):954–963

    Google Scholar 

  121. Wallach H (1940) The role of head movements and vestibular and visual cues in sound localization. J Exp Psychol 27(4):339–368

    Article  MathSciNet  Google Scholar 

  122. Warren HC (1895) Sensations of rotation. Psychol Rev 2(3):273–276. doi:10.1037/h0074437

    Article  MathSciNet  Google Scholar 

  123. Warren R, Wertheim AH (eds) (1990) Perception and control of self-motion. Erlbaum, London

    Google Scholar 

  124. Wertheim AH, Reymond G (2007) Neural noise distorts perceived motion: the special case of the freezing illusion and the Pavard and Berthoz effect. Exp Brain Res 180:569–576. doi:10.1007/s00221-007-0887-2

    Article  Google Scholar 

  125. Wolpert L (1990) Field-of-view information for self-motion perception. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 101–126

    Google Scholar 

  126. Wong SCP, Frost BJ (1981) The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Percept Psychophysics 30(3):228–236

    Article  Google Scholar 

  127. Wood RW (1895) The “Haunted Swing” illusion. Psychol Rev 2(3):277–278. doi:10.1037/h0073333

    Article  Google Scholar 

  128. Wright WG (2009) Linear vection in virtual environments can be strengthened by discordant inertial input. 31st annual international conference of the IEEE EMBS (Engineering in Medicine and Biology Society). Minneapolis, USA, pp 1157–1160. doi:10.1109/IEMBS.2009.5333425

  129. Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual andinertial motion: More than weighted summation of sensory inputs. J Vestib Res Equilibr Orientation 15(4):185–195

    Google Scholar 

  130. Wright WG, DiZio P, Lackner JR (2006) Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. J Vestib Res 16(1–2):23–28

    Google Scholar 

  131. Yabe Y, Taga G (2008) Treadmill locomotion captures visual perception of apparent motion. Exp Brain Res 191(4):487–494. doi:10.1007/s00221-008-1541-3

    Article  Google Scholar 

  132. Yabe Y, Watanabe H, Taga G (2011) Treadmill experience alters treadmill effects on perceived visual motion. PLoS ONE 6(7):e21642. doi:10.1371/journal.pone.0021642

    Article  Google Scholar 

  133. Young LR, Oman CM, Dichgans JM (1975) Influence of head orientation on visually induced pitch and roll sensation. Aviat Space Environ Med 46(3):264–268

    Google Scholar 

  134. Young LR, Shelhamer M (1990) Weightlessness enhances the relative contribution of visually-induced self-motion. In: Warren R, Wertheim AH (eds) Perception and control of self-motion: resources for ecological psychology. Erlbaum, Hillsdale

    Google Scholar 

Download references

Acknowledgments

This work was funded by Simon Fraser University, NSERC, the European Community (IST-2001-39223), and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard E. Riecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Riecke, B.E., Schulte-Pelkum, J. (2013). Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (“Vection”) Be Utilized?. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds) Human Walking in Virtual Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8432-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8432-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8431-9

  • Online ISBN: 978-1-4419-8432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics