Abstract
How can we convincingly simulate observer locomotion through virtual environments without having to allow for full physical observer movement? That is, how can we best utilize multi-modal stimulation to provide the compelling illusion of moving through simulated worlds while reducing the overall simulation effort? This chapter provides a review on the contribution and interaction of visual, auditory, vibrational, and biomechanical cues (e.g., walking) for self-motion perception and simulation in VR. We propose an integrative framework and discuss potential synergistic effects of perceptual and cognitive influences on self-motion perception in VEs. Based on this perspective, we envision a lean-and-elegant approach that utilizes multi-modal self-motion illusions and perceptual-cognitive factors in a synergistic manner to improve perceptual and behavioral effectiveness and reduce the demand for physical (loco-)motion interfaces to a more affordable level.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Viewpoint jitter refers to a specific optic flow pattern that simulates the visual “jittering” effects of small head movements of the observer, similar to “camera shake”: For example, a constant, radially expanding optic flow pattern that simulates forward linear motion would get an additional jittering optic flow component on top if the visual effects of oscillating up-down head movements that occur during normal walking is added to the expanding optical flow field.
References
Allison RS, Howard IP, Zacher JE (1999) Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room. Perception 28(3):299–306
Andersen GJ (1986) Perception of self-motion—psychophysical and computational approaches. Psychol Bull 99(1):52–65
Andersen GJ, Braunstein ML (1985) Induced self-motion in central vision. J Exp Psychol Hum Percept Perform 11(2):122–132
Ash A, Palmisano S, Allison RS (2012) Vection in depth during treadmill locomotion. J Vis. 12(9):181–181
Ash A, Palmisano S, Govan DG, Kim J (2011) Display lag and gain effects on vection experienced by active observers. Aviat Space Environ Med 82(8):763–769. doi:10.3357/ASEM.3026.2011
Ash A, Palmisano S, Kim J (2011) Vection in depth during consistent and inconsistent multisensory stimulation. Perception 40(2):155–174. doi:10.1068/p6837
Becker W, Nasios G, Raab S, Jürgens R (2002) Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Exp Brain Res 144(4):458–474
Becker W, Raab S, Jürgens R (2002) Circular vection during voluntary suppression of optokinetic reflex. Exp Brain Res 144(4):554–557
Berger DR, Schulte-Pelkum J, Bülthoff HH (2010) Simulating believable forward accelerations on a stewart motion platform. ACM Trans Appl Percept 7(1):1–27. doi:10.1145/1658349.1658354
Berthoz A, Pavard B, Young LR (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection)—basic characteristics and visual-vestibular interactions. Exp Brain Res 23(5):471–489
Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: Only one provocative conflict? Brain Res Bull 47(5):481–487
Bles W, Dejong JMBV, Rasmussens JJ (1984) Postural and Oculomotor Signs in labyrinthine-defective subjects. Acta Oto-Laryngologica 96(s406):101–104
Bles W (1981) Stepping around: circular vection and Coriolis effects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, NJ, pp 47–61
Bles W, Kapteyn TS (1977) Circular vection and human posture .1. Does proprioceptive system play a role. Agressologie 18:325–328
Brandt T, Büchele W, Arnold F (1977) Arthrokinetic nystagmus and ego-motion sensation. Exp Brain Res 30(2):331–338. doi:10.1007/BF00237260
Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491
Brandt T, Wist ER, Dichgans J (1975) Foreground and Background in Dynamic Spatial Orientation. Percept Psychophysics 17(5):497–503
Bruggeman H, Piuneu VS, Rieser JJ, Pick HLJ (2009) Biomechanical versus inertial information: Stable individual differences in perception of self-rotation. J Exp Psychol Hum Percept Perform 35(5):1472–1480. doi:10.1037/a0015782
Bubka A, Bonato F (2010) Natural visual-field features enhance vection. Perception 39(5):627–635. doi:10.1068/p6315
Campos JL, Siegle JH, Mohler BJ, Bülthoff HH, Loomis JM (2009) Imagined self-motion differs from perceived self-motion: evidence from a novel continuous pointing method. PLoS ONE 4(11):e7793. doi:10.1371/journal.pone.0007793
Cheung BSK, Howard IP, Money KE (1990) Visually-induced tilt during parabolic flights. Exp Brain Res 81(2):391–397. doi:10.1007/BF00228131
Cheung BSK, Howard IP, Nedzelski JM, Landolt JP (1989) Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica 108(5):336. doi:10.3109/00016488909125537
Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. Perception, handbook of sensory physiology vol VIII. Springer, Berlin, pp 756–804
DiZio P, Lackner JR (2002) Proprioceptive adaptation and aftereffects. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 751–771
Durgin FH, Gigone K, Scott R (2005) Perception of visual speed while moving. J Exp Psychol Hum Percept Perform 31(2):339–353. doi:10.1037/0096-1523.31.2.339
Durgin FH, Pelah A, Fox LF, Lewis JY, Kane R, Walley KA (2005) Self-motion perception during locomotor recalibration: more than meets the eye. J Exp Psychol Hum Percept Perform 31(3):398–419
Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169
Fischer MH, Kornmüller AE (1930) Optokinetisch ausgelöste Bewegungswahrnehmung und optokinetischer Nystagmus [Optokinetically induced motion perception and optokinetic nystagmus]. J für Psychol und Neurol 41:273–308
Frissen I, Campos JL, Souman JL, Ernst MO (2011) Integration of vestibular and proprioceptive signals for spatial updating. Exp Brain Res 212(2):163–176. doi:10.1007/s00221-011-2717-9
Giannopulu I, Lepecq JC (1998) Linear-vection chronometry along spinal and sagittal axes in erect man. Perception 27(3):363–372
Harm DL (2002) Motion sickness neurophysiology, physiological correlates, and treatment. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 637–661
Held R, Dichgans J, Bauer J (1975) Characteristics of moving visual scenes influencing spatial orientation. Vis Res 15(3):357–365. IN1. doi:10.1016/0042-6989(75)90083-8
von Helmholtz H (1866) Handbuch der physiologischen Optik. Voss, Leipzig, Germany
Hettinger LJ (2002) Illusory self-motion in virtual environments. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 471–492
Hettinger LJ, Berbaum KS, Kennedy RS, Dunlap WP, Nolan MD (1990) Vection and simulator sickness. Mil Psychol 2(3):171–181. doi:10.1007/978-1-4419-8432-6_4
von der Heyde M, Riecke BE (2002) Embedding presence-related terminology in a logical and functional model (pp. 37–52). Presented at the Presence. Retrieved from http://edoc.mpg.de/39355
Hollerbach JM (2002) Locomotion interfaces. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 239–254
Howard IP (1982) Human visual orientation. Wiley, Chichester, New York
Howard IP (1986) The perception of posture, self motion, and the visual vertical. In: Boff KR, Kaufman L, Thomas JP (eds) Sensory processes and perception, Handbook of human perception and performance. vol 1. Wiley, New York, pp 18.1–18.62
Howard IP, Childerson L (1994) The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception 23(7):753–762. doi:10.1068/p230753
Howard IP, Heckmann T (1989) Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception 18(5):657–665. doi:10.1068/p180657
Howard IP, Howard A (1994) Vection–the contributions of absolute and relative visual motion. Perception 23(7):745–751
Howard IP, Jenkin HL, Hu G (2000) Visually-induced reorientation illusions as a function of age. Aviat Space Environ Med 71(9 Suppl):A87–91
Howard IP, Zacher JE, Allison RS (1998) Post-rotatory nystagmus and turning sensations after active and passive turning. J Vestib Res 8(4):299–312
Ito H, Shibata I (2005) Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity. Vis Res 45(4):397–402. doi:10.1016/j.visres.2004.11.009
Ji JTT, So RHY, Cheung RTF (2009) Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Hum Factors 51(5):739–751. doi:10.1177/0018720809349708
Johansson G (1977) Studies on visual-perception of locomotion. Perception 6(4):365–376. doi:10.1068/p060365
Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res Equilibr Orientation 9(2):83–87
Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp Brain Res 174(3):528–543. doi:10.1007/s00221-006-0486-7
Kennedy RS, Drexler JM, Compton DE, Stanney KM, Lanham DS, Harm DL (2003) Configural scoring of simulator sickness, cybersickness, and space adaptation syndrome: similarities and differences. In: Lawrence J Hettinger, Micheal W Hwas (eds) Virtual and adaptive environments: applications, implications, and human performance, issues, Lawrence Erlbaum Associates, USA, pp 247–278. http://www.amazon.com/Virtual-Adaptive-Environments-Applications-Implications/dp/080583107X/ref=sr_1_2?ie=UTF8&qid=1359862979&sr=8-2&keywords=Configural+scoring+of+simulator+sickness%2C+cybersickness%2C+and+space+adaptation+syndrome%3A#reader_080583107X
Kitazaki M, Murata A, Onimaru S, Sato T (2008) Vection during walking: effects of vision-action direction congruency and visual jitter. Poster presented at the International Multisensory Research Forum, Hamburg, Germany
Kitazaki M, Onimaru S, Sato T (2010) Vection and action are incompatible. Presented at the 2nd IEEE VR 2010 workshop on perveptual illusions in virtual environments (PIVE). Waltham, USA, pp 22–23
Kitazaki M, Sato T (2003) Attentional modulation of self-motion perception. Perception 32(4):475–484. doi:10.1068/p5037
Lackner JR (1977) Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviat Space Environ Med 48(2):129–131
Lackner JR, DiZio P (1988) Visual stimulation affects the perception of voluntary leg movements during walking. Perception 17(1):71–80. doi:10.1068/p170071
Larsson P, Västfjäll D, Kleiner M (2004) Perception of self-motion and presence in auditory virtual environments. In: Proceedings of 7th annual workshop of presence, pp 252–258
Lepecq JC, Giannopulu I, Baudonniere PM (1995) Cognitive effects on visually induced body motion in children. Perception 24(4):435–449
Lepecq JC, Jouen F, Dubon D (1993) The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception 22(1):49–60
Loomis J, Knapp J (2003) Visual perception of egocentric distance in real and virtual environments. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications, and human performance issues. Lawrence Erlbaum, Mahwah, USA, pp 21–46
Mach E (1875) Grundlinien der Lehre von der Bewegungsempfindung. Engelmann, Leipzig, Germany
Mergner T, Becker W (1990) Perception of horizontal self-rotation: Multisensory and cognitive aspects. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, London, pp 219–263
Nakamura S (2006) Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vis Res 46(15):2344–2353. doi:10.1016/j.visres.2006.01.016
Nakamura S (2008) Effects of stimulus eccentricity on vection reevaluated with a binocularly defined depth. Jpn Psychol Res 50(2):77–86. doi:10.1111/j.1468-5884.2008.00363.x
Nakamura S (2010) Additional oscillation can facilitate visually induced self-motion perception: the effects of its coherence and amplitude gradient. Perception 39(3):320–329. doi:10.1068/p6534
Nakamura S, Shimojo S (1999) Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception 28(7):893–902
Nichols S, Patel H (2002) Health and safety implications of virtual reality: a review of empirical evidence. Appl Ergonomics 33(3):251–271. doi:10.1016/S0003-6870(02)00020-0
Ohmi M, Howard IP (1988) Effect of stationary objects on illusory forward self-motion induced by a looming display. Perception 17(1):5–12. doi:10.1068/p170005
Ohmi M, Howard IP, Landolt JP (1987) Circular vection as a function of foreground-background relationships. Perception 16(1):17–22
Onimaru S, Sato T, Kitazaki M (2010) Veridical walking inhibits vection perception. J Vis 10(7):860. doi:10.1167/10.7.860
Palmisano S (1996) Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Percept Psychophysics 58(8):1168–1176
Palmisano S, Allison RS, Howard IP (2006) Illusory scene distortion occurs during perceived self-rotation in roll. Vis Res 46(23):4048–4058. doi:10.1016/j.visres.2006.07.020
Palmisano S, Allison RS, Kim J, Bonato F (2011) Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing Perceiving 24(2):173–200. doi:10.1163/187847511X570817
Palmisano S, Bonato F, Bubka A, Folder J (2007) Vertical display oscillation effects on forward vection and simulator sickness. Aviat Space Environ Med 78(10):951–956
Palmisano S, Burke D, Allison RS (2003) Coherent perspective jitter induces visual illusions of self- motion. Perception 32(1):97–110
Palmisano S, Chan AYC (2004) Jitter and size effects on vection are immune to experimental instructions and demands. Perception 33(8):987–1000
Palmisano S, Gillam B (1998) Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception 27(9):1067–1077
Palmisano S, Gillam BJ, Blackburn SG (2000) Global-perspective jitter improves vection in central vision. Perception 29(1):57–67
Palmisano S, Keane S (2004) Effect of visual jitter on visual-vestibular interaction during vection. Aust J Psychol 56(Suppl. S):213
Post RB (1988) Circular vection is independent of stimulus eccentricity. Perception 17(6):737–744. doi:10.1068/p170737
Presson CC, Montello DR (1994) Updating after rotational and translational body movements: coordinate structure of perspective space. Perception 23(12):1447–1455. doi:10.1068/p231447
Prothero JD, Hoffman HG, Parker DE, Furness TA, Wells MJ (1995) Foreground/background manipulations affect presence. Proc Hum Factors Ergon Soc Ann Meet 39(21):1410–1414. doi:10.1177/154193129503902111
Prothero JD, Parker DE (2003) A unified approach to presence and motion sickness. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications, and human performance issues. Lawrence Erlbaum, New York, pp 47–66
Riecke BE (2003) How far can we get with just visual information? Path integration and spatial updating studies in virtual reality. vol. 8, Berlin http://www.logos-verlag.de/cgi-bin/buch/isbn/0440
Riecke BE (2006) Simple user-generated motion cueing can enhance self-motion perception (Vection) in virtual reality. In: Proceedings of the ACM symposium on virtual reality software and technology (VRST) Limassol, ACM, Cyprus, pp 104–107. doi:10.1145/1180495.1180517
Riecke BE (2009) Cognitive and higher-level contributions to illusory self-motion perception (“vection”): does the possibility of actual motion affect vection? Jpn J Psychon Sci 28(1):135–139
Riecke BE (2011) Compelling self-motion through virtual environments without actual self-motion–using self-motion illusions (“Vection”) to improve user experience in VR. In: Kim J-J (ed) Virtual reality, pp 149–176. doi:10.5772/13150. InTech. http://www.intechopen.com/articles/show/title/compelling-self-motion-through-virtual-environments-without-actual-self-motion-using-self-motion-ill
Riecke BE, Feuereissen D (2012) To move or not to move: can active control and user-driven motion cueing enhance self-motion perception (“Vection”) in virtual reality? ACM symposium on applied perception SAP (accepted full paper) ACM. Los Angeles, USA, pp 1–8
Riecke BE, Feuereissen D, Rieser JJ (2009) Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Trans Appl Percept 6(3):1–22. doi:10.1145/1577755.1577763
Riecke BE, Feuereissen D, Rieser JJ, McNamara TP (2011) Spatialized sound enhances biomechanically-induced self-motion illusion (vection). Proceedings of the 2011 annual conference on Human factors in computing systems, CHI ’11. ACM SIG.CHI, Vancouver, Canada, pp 2799–2802. http://doi.acm.org/10.1145/1978942.1979356
Riecke BE, Feuereissen D, Rieser JJ, McNamara TP (2012) Self-motion illusions (Vection) in VR–are they good for anything? IEEE virtual reality 2012. Orange County, USA, pp 35–38: doi:10.1109/VR.2012.6180875
Riecke BE, Schulte-Pelkum J, Avraamides MN, Bülthoff HH (2004) Enhancing the visually induced self-motion illusion (Vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual workshop presence 2004, pp 125–132. doi:10.1.1.122.5636
Riecke BE, Schulte-Pelkum J, Avraamides MN, Heyde MVD, Bülthoff HH (2006) Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl Percept (TAP) 3(3):194–216. doi:10.1145/1166087.1166091
Riecke BE, Schulte-Pelkum J,Caniard F (2006)Visually induced linear vection is enhanced by small physical accelerations. 7th international multisensory research forum (IMRF). Dublin, Ireland
Riecke BE, Schulte-Pelkum J, Caniard F, Bülthoff HH (2005a) Towards lean and elegant self-motion simulation in virtual reality. Proceedings of IEEE virtual reality 2005. Bonn, Germany, pp 131–138. http://doi.ieeecomputersociety.org/10.1109/VR.2005.83
Riecke BE, Väljamäe A, Schulte-Pelkum J (2009) Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Trans Appl Percept 6(2):1–27
Riecke BE, Västfjäll D, Larsson P, Schulte-Pelkum J (2005) Top-down and multi-modal influences on self-motion perception in virtual reality. Proceedings of HCI international 2005. Las Vegas, USA, pp 1–10. http://en.scientificcommons.org/20596227
Rieser JJ (1989) Access to knowledge of spatial structure at novel points of observation. J Exp Psychol Learn Mem Cogn 15(6):1157–1165. doi:10.1037/0278-7393.15.6.1157
Rieser JJ, Pick HL, Ashmead D, Garing AE (1995) Calibration of human locomotion and models of perceptual-motor organization. J Exp Psychol Hum Percept Perform 21(3):480–497
Sasaki K, Seno T, Yamada Y, Miura K (2012) Emotional sounds influence vertical vection. Perception 41(7):875–877
Schulte-Pelkum J (2007) Perception of self-motion: vection experiments in multi-sensory virtual environments (PhD thesis). Ruhr-Universität Bochum. http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/SchultePelkumJoerg/
Schulte-Pelkum J, Riecke BE, von der Heyde M, Bülthoff HH (2003) Circular vection is facilitated by a consistent photorealistic scene. Talk presented at the presence 2003 Conference. Aalborg, Denmark
Seno T, Hasuo E, Ito H, Nakajima Y (2012) Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception 41(5):577–593
Seno T, Ito H, Sunaga S (2009) The object and background hypothesis for vection. Vis Res 49(24):2973–2982. doi:10.1016/j.visres.2009.09.017
Seno T, Ito H, Sunaga S (2011a) Inconsistent locomotion inhibits vection. Perception 40(6):747
Seno T, Ito H, Sunaga S (2011b) Attentional load inhibits vection. Attention Percept Psychophysics 73(5):1467–1476. doi:10.3758/s13414-011-0129-3
Seno T, Ogawa M, Ito H, Sunaga S (2011) Consistent air flow to the face facilitates vection. Perception 40(10):1237–1240
Seno T, Palmisano S, Ito H, Sunaga S (2012) Vection can be induced without global-motion awareness. Perception 41(4):493–497. doi:10.1068/p7206
Seno T, Yamada Y, lhaya, K (2011) Narcissistic people cannot be moved easily by visual stimulation. Perception 40(11):1390–1392. doi:10.1068/p7062
Siegle JH, Campos JL, Mohler BJ, Loomis JM, Bülthoff HH (2009) Measurement of instantaneous perceived self-motion using continuous pointing. Exp Brain Res 195(3):429–444. doi:10.1007/s00221-009-1805-6
Slater M, Steed A, McCarthy J, Maringelli F (1998) The influence of body movement on subjective presence in virtual environments. Hum Factors 40(3):469–477
Steinicke F, Bruder G, Hinrichs K, Jerald J, Frenz H, Lappe M (2009) Real walking through virtual environments by redirection techniques. J Virtual Reality Broadcast 6(2)
Trutoiu LC, Mohler BJ, Schulte-Pelkum J, Bülthoff HH (2009) Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Comput Graph 33(1):47–58. doi:10.1016/j.cag.2008.11.008
Trutoiu LC, Streuber S, Mohler BJ, Schulte-Pelkum J, Bülthoff HH (2008) Tricking people into feeling like they are moving when they are not paying attention. Applied perception in graphics and visualization (APGV) 190–190. http://doi.acm.org/10.1145/1394281.1394319
Urbantschitsch V (1897) Über Störungen des Gleichgewichtes und Scheinbewegungen. Z Ohrenheilk 31:234–294
van der Steen FAM (1998) Self-motion perception (PhD thesis). Technical University Delft, Netherlands
van der Steen FAM, Brockhoff PTM (2000) Induction and impairment of saturated yaw and surge vection. Percept Psychophysics 62(1):89–99
Väljamäe A (2007) Sound for multisensory motion simulators (PhD thesis). Chalmers University of Technology, Gothenburg, Sweden
Väljamäe A (2009) Auditorily-induced illusory self-motion: A review. Brain Res Rev 61(2):240–255. doi:10.1016/j.brainresrev.2009.07.001
Väljamäe A, Alliprandini PMZ, Alais D, Kleiner M (2009) Auditory landmarks enhance circular vection in multimodal virtual reality. J Audio Eng Soc 57(3):111–120
Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2006) Vibrotactile enhancement of auditory induced self-motion and spatial presence. J Acoust Eng Soc 54(10):954–963
Wallach H (1940) The role of head movements and vestibular and visual cues in sound localization. J Exp Psychol 27(4):339–368
Warren HC (1895) Sensations of rotation. Psychol Rev 2(3):273–276. doi:10.1037/h0074437
Warren R, Wertheim AH (eds) (1990) Perception and control of self-motion. Erlbaum, London
Wertheim AH, Reymond G (2007) Neural noise distorts perceived motion: the special case of the freezing illusion and the Pavard and Berthoz effect. Exp Brain Res 180:569–576. doi:10.1007/s00221-007-0887-2
Wolpert L (1990) Field-of-view information for self-motion perception. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 101–126
Wong SCP, Frost BJ (1981) The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Percept Psychophysics 30(3):228–236
Wood RW (1895) The “Haunted Swing” illusion. Psychol Rev 2(3):277–278. doi:10.1037/h0073333
Wright WG (2009) Linear vection in virtual environments can be strengthened by discordant inertial input. 31st annual international conference of the IEEE EMBS (Engineering in Medicine and Biology Society). Minneapolis, USA, pp 1157–1160. doi:10.1109/IEMBS.2009.5333425
Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual andinertial motion: More than weighted summation of sensory inputs. J Vestib Res Equilibr Orientation 15(4):185–195
Wright WG, DiZio P, Lackner JR (2006) Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. J Vestib Res 16(1–2):23–28
Yabe Y, Taga G (2008) Treadmill locomotion captures visual perception of apparent motion. Exp Brain Res 191(4):487–494. doi:10.1007/s00221-008-1541-3
Yabe Y, Watanabe H, Taga G (2011) Treadmill experience alters treadmill effects on perceived visual motion. PLoS ONE 6(7):e21642. doi:10.1371/journal.pone.0021642
Young LR, Oman CM, Dichgans JM (1975) Influence of head orientation on visually induced pitch and roll sensation. Aviat Space Environ Med 46(3):264–268
Young LR, Shelhamer M (1990) Weightlessness enhances the relative contribution of visually-induced self-motion. In: Warren R, Wertheim AH (eds) Perception and control of self-motion: resources for ecological psychology. Erlbaum, Hillsdale
Acknowledgments
This work was funded by Simon Fraser University, NSERC, the European Community (IST-2001-39223), and the Max Planck Society.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Riecke, B.E., Schulte-Pelkum, J. (2013). Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (“Vection”) Be Utilized?. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds) Human Walking in Virtual Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8432-6_2
Download citation
DOI: https://doi.org/10.1007/978-1-4419-8432-6_2
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-8431-9
Online ISBN: 978-1-4419-8432-6
eBook Packages: EngineeringEngineering (R0)