Perceptual and Cognitive Factors for Self-Motion Simulation in Virtual Environments: How Can Self-Motion Illusions (“Vection”) Be Utilized?



How can we convincingly simulate observer locomotion through virtual environments without having to allow for full physical observer movement? That is, how can we best utilize multi-modal stimulation to provide the compelling illusion of moving through simulated worlds while reducing the overall simulation effort? This chapter provides a review on the contribution and interaction of visual, auditory, vibrational, and biomechanical cues (e.g., walking) for self-motion perception and simulation in VR. We propose an integrative framework and discuss potential synergistic effects of perceptual and cognitive influences on self-motion perception in VEs. Based on this perspective, we envision a lean-and-elegant approach that utilizes multi-modal self-motion illusions and perceptual-cognitive factors in a synergistic manner to improve perceptual and behavioral effectiveness and reduce the demand for physical (loco-)motion interfaces to a more affordable level.


Vection Virtual reality Locomotion Walking  Cognition Virtual environments Motion simulation 



This work was funded by Simon Fraser University, NSERC, the European Community (IST-2001-39223), and the Max Planck Society.


  1. 1.
    Allison RS, Howard IP, Zacher JE (1999) Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room. Perception 28(3):299–306CrossRefGoogle Scholar
  2. 2.
    Andersen GJ (1986) Perception of self-motion—psychophysical and computational approaches. Psychol Bull 99(1):52–65Google Scholar
  3. 3.
    Andersen GJ, Braunstein ML (1985) Induced self-motion in central vision. J Exp Psychol Hum Percept Perform 11(2):122–132CrossRefGoogle Scholar
  4. 4.
    Ash A, Palmisano S, Allison RS (2012) Vection in depth during treadmill locomotion. J Vis. 12(9):181–181Google Scholar
  5. 5.
    Ash A, Palmisano S, Govan DG, Kim J (2011) Display lag and gain effects on vection experienced by active observers. Aviat Space Environ Med 82(8):763–769. doi: 10.3357/ASEM.3026.2011 CrossRefGoogle Scholar
  6. 6.
    Ash A, Palmisano S, Kim J (2011) Vection in depth during consistent and inconsistent multisensory stimulation. Perception 40(2):155–174. doi: 10.1068/p6837 CrossRefGoogle Scholar
  7. 7.
    Becker W, Nasios G, Raab S, Jürgens R (2002) Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Exp Brain Res 144(4):458–474CrossRefGoogle Scholar
  8. 8.
    Becker W, Raab S, Jürgens R (2002) Circular vection during voluntary suppression of optokinetic reflex. Exp Brain Res 144(4):554–557CrossRefGoogle Scholar
  9. 9.
    Berger DR, Schulte-Pelkum J, Bülthoff HH (2010) Simulating believable forward accelerations on a stewart motion platform. ACM Trans Appl Percept 7(1):1–27. doi: 10.1145/1658349.1658354 CrossRefGoogle Scholar
  10. 10.
    Berthoz A, Pavard B, Young LR (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection)—basic characteristics and visual-vestibular interactions. Exp Brain Res 23(5):471–489Google Scholar
  11. 11.
    Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: Only one provocative conflict? Brain Res Bull 47(5):481–487Google Scholar
  12. 12.
    Bles W, Dejong JMBV, Rasmussens JJ (1984) Postural and Oculomotor Signs in labyrinthine-defective subjects. Acta Oto-Laryngologica 96(s406):101–104Google Scholar
  13. 13.
    Bles W (1981) Stepping around: circular vection and Coriolis effects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, NJ, pp 47–61Google Scholar
  14. 14.
    Bles W, Kapteyn TS (1977) Circular vection and human posture .1. Does proprioceptive system play a role. Agressologie 18:325–328Google Scholar
  15. 15.
    Brandt T, Büchele W, Arnold F (1977) Arthrokinetic nystagmus and ego-motion sensation. Exp Brain Res 30(2):331–338. doi: 10.1007/BF00237260 Google Scholar
  16. 16.
    Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491CrossRefGoogle Scholar
  17. 17.
    Brandt T, Wist ER, Dichgans J (1975) Foreground and Background in Dynamic Spatial Orientation. Percept Psychophysics 17(5):497–503CrossRefGoogle Scholar
  18. 18.
    Bruggeman H, Piuneu VS, Rieser JJ, Pick HLJ (2009) Biomechanical versus inertial information: Stable individual differences in perception of self-rotation. J Exp Psychol Hum Percept Perform 35(5):1472–1480. doi: 10.1037/a0015782 CrossRefGoogle Scholar
  19. 19.
    Bubka A, Bonato F (2010) Natural visual-field features enhance vection. Perception 39(5):627–635. doi: 10.1068/p6315 CrossRefGoogle Scholar
  20. 20.
    Campos JL, Siegle JH, Mohler BJ, Bülthoff HH, Loomis JM (2009) Imagined self-motion differs from perceived self-motion: evidence from a novel continuous pointing method. PLoS ONE 4(11):e7793. doi: 10.1371/journal.pone.0007793 CrossRefGoogle Scholar
  21. 21.
    Cheung BSK, Howard IP, Money KE (1990) Visually-induced tilt during parabolic flights. Exp Brain Res 81(2):391–397. doi: 10.1007/BF00228131 CrossRefGoogle Scholar
  22. 22.
    Cheung BSK, Howard IP, Nedzelski JM, Landolt JP (1989) Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica 108(5):336. doi: 10.3109/00016488909125537 CrossRefGoogle Scholar
  23. 23.
    Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. Perception, handbook of sensory physiology vol VIII. Springer, Berlin, pp 756–804Google Scholar
  24. 24.
    DiZio P, Lackner JR (2002) Proprioceptive adaptation and aftereffects. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 751–771Google Scholar
  25. 25.
    Durgin FH, Gigone K, Scott R (2005) Perception of visual speed while moving. J Exp Psychol Hum Percept Perform 31(2):339–353. doi: 10.1037/0096-1523.31.2.339 CrossRefGoogle Scholar
  26. 26.
    Durgin FH, Pelah A, Fox LF, Lewis JY, Kane R, Walley KA (2005) Self-motion perception during locomotor recalibration: more than meets the eye. J Exp Psychol Hum Percept Perform 31(3):398–419CrossRefGoogle Scholar
  27. 27.
    Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169CrossRefGoogle Scholar
  28. 28.
    Fischer MH, Kornmüller AE (1930) Optokinetisch ausgelöste Bewegungswahrnehmung und optokinetischer Nystagmus [Optokinetically induced motion perception and optokinetic nystagmus]. J für Psychol und Neurol 41:273–308Google Scholar
  29. 29.
    Frissen I, Campos JL, Souman JL, Ernst MO (2011) Integration of vestibular and proprioceptive signals for spatial updating. Exp Brain Res 212(2):163–176. doi: 10.1007/s00221-011-2717-9 CrossRefGoogle Scholar
  30. 30.
    Giannopulu I, Lepecq JC (1998) Linear-vection chronometry along spinal and sagittal axes in erect man. Perception 27(3):363–372CrossRefGoogle Scholar
  31. 31.
    Harm DL (2002) Motion sickness neurophysiology, physiological correlates, and treatment. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 637–661Google Scholar
  32. 32.
    Held R, Dichgans J, Bauer J (1975) Characteristics of moving visual scenes influencing spatial orientation. Vis Res 15(3):357–365. IN1. doi: 10.1016/0042-6989(75)90083-8 Google Scholar
  33. 33.
    von Helmholtz H (1866) Handbuch der physiologischen Optik. Voss, Leipzig, GermanyGoogle Scholar
  34. 34.
    Hettinger LJ (2002) Illusory self-motion in virtual environments. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 471–492Google Scholar
  35. 35.
    Hettinger LJ, Berbaum KS, Kennedy RS, Dunlap WP, Nolan MD (1990) Vection and simulator sickness. Mil Psychol 2(3):171–181. doi: 10.1007/978-1-4419-8432-6_4 CrossRefGoogle Scholar
  36. 36.
    von der Heyde M, Riecke BE (2002) Embedding presence-related terminology in a logical and functional model (pp. 37–52). Presented at the Presence. Retrieved from
  37. 37.
    Hollerbach JM (2002) Locomotion interfaces. In: Stanney KM (ed) Handbook of virtual environments. Lawrence Erlbaum, New York, pp 239–254Google Scholar
  38. 38.
    Howard IP (1982) Human visual orientation. Wiley, Chichester, New YorkGoogle Scholar
  39. 39.
    Howard IP (1986) The perception of posture, self motion, and the visual vertical. In: Boff KR, Kaufman L, Thomas JP (eds) Sensory processes and perception, Handbook of human perception and performance. vol 1. Wiley, New York, pp 18.1–18.62Google Scholar
  40. 40.
    Howard IP, Childerson L (1994) The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception 23(7):753–762. doi: 10.1068/p230753 CrossRefGoogle Scholar
  41. 41.
    Howard IP, Heckmann T (1989) Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception 18(5):657–665. doi: 10.1068/p180657 CrossRefGoogle Scholar
  42. 42.
    Howard IP, Howard A (1994) Vection–the contributions of absolute and relative visual motion. Perception 23(7):745–751CrossRefGoogle Scholar
  43. 43.
    Howard IP, Jenkin HL, Hu G (2000) Visually-induced reorientation illusions as a function of age. Aviat Space Environ Med 71(9 Suppl):A87–91Google Scholar
  44. 44.
    Howard IP, Zacher JE, Allison RS (1998) Post-rotatory nystagmus and turning sensations after active and passive turning. J Vestib Res 8(4):299–312CrossRefGoogle Scholar
  45. 45.
    Ito H, Shibata I (2005) Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity. Vis Res 45(4):397–402. doi: 10.1016/j.visres.2004.11.009 CrossRefGoogle Scholar
  46. 46.
    Ji JTT, So RHY, Cheung RTF (2009) Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Hum Factors 51(5):739–751. doi: 10.1177/0018720809349708 CrossRefGoogle Scholar
  47. 47.
    Johansson G (1977) Studies on visual-perception of locomotion. Perception 6(4):365–376. doi: 10.1068/p060365 MathSciNetCrossRefGoogle Scholar
  48. 48.
    Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res Equilibr Orientation 9(2):83–87Google Scholar
  49. 49.
    Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp Brain Res 174(3):528–543. doi: 10.1007/s00221-006-0486-7 CrossRefGoogle Scholar
  50. 50.
    Kennedy RS, Drexler JM, Compton DE, Stanney KM, Lanham DS, Harm DL (2003) Configural scoring of simulator sickness, cybersickness, and space adaptation syndrome: similarities and differences. In: Lawrence J Hettinger, Micheal W Hwas (eds) Virtual and adaptive environments: applications, implications, and human performance, issues, Lawrence Erlbaum Associates, USA, pp 247–278.
  51. 51.
    Kitazaki M, Murata A, Onimaru S, Sato T (2008) Vection during walking: effects of vision-action direction congruency and visual jitter. Poster presented at the International Multisensory Research Forum, Hamburg, GermanyGoogle Scholar
  52. 52.
    Kitazaki M, Onimaru S, Sato T (2010) Vection and action are incompatible. Presented at the 2nd IEEE VR 2010 workshop on perveptual illusions in virtual environments (PIVE). Waltham, USA, pp 22–23Google Scholar
  53. 53.
    Kitazaki M, Sato T (2003) Attentional modulation of self-motion perception. Perception 32(4):475–484. doi: 10.1068/p5037 CrossRefGoogle Scholar
  54. 54.
    Lackner JR (1977) Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviat Space Environ Med 48(2):129–131Google Scholar
  55. 55.
    Lackner JR, DiZio P (1988) Visual stimulation affects the perception of voluntary leg movements during walking. Perception 17(1):71–80. doi: 10.1068/p170071 CrossRefGoogle Scholar
  56. 56.
    Larsson P, Västfjäll D, Kleiner M (2004) Perception of self-motion and presence in auditory virtual environments. In: Proceedings of 7th annual workshop of presence, pp 252–258Google Scholar
  57. 57.
    Lepecq JC, Giannopulu I, Baudonniere PM (1995) Cognitive effects on visually induced body motion in children. Perception 24(4):435–449CrossRefGoogle Scholar
  58. 58.
    Lepecq JC, Jouen F, Dubon D (1993) The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception 22(1):49–60CrossRefGoogle Scholar
  59. 59.
    Loomis J, Knapp J (2003) Visual perception of egocentric distance in real and virtual environments. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications, and human performance issues. Lawrence Erlbaum, Mahwah, USA, pp 21–46Google Scholar
  60. 60.
    Mach E (1875) Grundlinien der Lehre von der Bewegungsempfindung. Engelmann, Leipzig, GermanyGoogle Scholar
  61. 61.
    Mergner T, Becker W (1990) Perception of horizontal self-rotation: Multisensory and cognitive aspects. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, London, pp 219–263Google Scholar
  62. 62.
    Nakamura S (2006) Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vis Res 46(15):2344–2353. doi: 10.1016/j.visres.2006.01.016 CrossRefGoogle Scholar
  63. 63.
    Nakamura S (2008) Effects of stimulus eccentricity on vection reevaluated with a binocularly defined depth. Jpn Psychol Res 50(2):77–86. doi: 10.1111/j.1468-5884.2008.00363.x CrossRefGoogle Scholar
  64. 64.
    Nakamura S (2010) Additional oscillation can facilitate visually induced self-motion perception: the effects of its coherence and amplitude gradient. Perception 39(3):320–329. doi: 10.1068/p6534 CrossRefGoogle Scholar
  65. 65.
    Nakamura S, Shimojo S (1999) Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception 28(7):893–902CrossRefGoogle Scholar
  66. 66.
    Nichols S, Patel H (2002) Health and safety implications of virtual reality: a review of empirical evidence. Appl Ergonomics 33(3):251–271. doi: 10.1016/S0003-6870(02)00020-0 CrossRefGoogle Scholar
  67. 67.
    Ohmi M, Howard IP (1988) Effect of stationary objects on illusory forward self-motion induced by a looming display. Perception 17(1):5–12. doi: 10.1068/p170005 CrossRefGoogle Scholar
  68. 68.
    Ohmi M, Howard IP, Landolt JP (1987) Circular vection as a function of foreground-background relationships. Perception 16(1):17–22CrossRefGoogle Scholar
  69. 69.
    Onimaru S, Sato T, Kitazaki M (2010) Veridical walking inhibits vection perception. J Vis 10(7):860. doi: 10.1167/10.7.860 CrossRefGoogle Scholar
  70. 70.
    Palmisano S (1996) Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Percept Psychophysics 58(8):1168–1176CrossRefGoogle Scholar
  71. 71.
    Palmisano S, Allison RS, Howard IP (2006) Illusory scene distortion occurs during perceived self-rotation in roll. Vis Res 46(23):4048–4058. doi: 10.1016/j.visres.2006.07.020 CrossRefGoogle Scholar
  72. 72.
    Palmisano S, Allison RS, Kim J, Bonato F (2011) Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing Perceiving 24(2):173–200. doi: 10.1163/187847511X570817 CrossRefGoogle Scholar
  73. 73.
    Palmisano S, Bonato F, Bubka A, Folder J (2007) Vertical display oscillation effects on forward vection and simulator sickness. Aviat Space Environ Med 78(10):951–956CrossRefGoogle Scholar
  74. 74.
    Palmisano S, Burke D, Allison RS (2003) Coherent perspective jitter induces visual illusions of self- motion. Perception 32(1):97–110CrossRefGoogle Scholar
  75. 75.
    Palmisano S, Chan AYC (2004) Jitter and size effects on vection are immune to experimental instructions and demands. Perception 33(8):987–1000CrossRefGoogle Scholar
  76. 76.
    Palmisano S, Gillam B (1998) Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception 27(9):1067–1077CrossRefGoogle Scholar
  77. 77.
    Palmisano S, Gillam BJ, Blackburn SG (2000) Global-perspective jitter improves vection in central vision. Perception 29(1):57–67CrossRefGoogle Scholar
  78. 78.
    Palmisano S, Keane S (2004) Effect of visual jitter on visual-vestibular interaction during vection. Aust J Psychol 56(Suppl. S):213Google Scholar
  79. 79.
    Post RB (1988) Circular vection is independent of stimulus eccentricity. Perception 17(6):737–744. doi: 10.1068/p170737 CrossRefGoogle Scholar
  80. 80.
    Presson CC, Montello DR (1994) Updating after rotational and translational body movements: coordinate structure of perspective space. Perception 23(12):1447–1455. doi: 10.1068/p231447 CrossRefGoogle Scholar
  81. 81.
    Prothero JD, Hoffman HG, Parker DE, Furness TA, Wells MJ (1995) Foreground/background manipulations affect presence. Proc Hum Factors Ergon Soc Ann Meet 39(21):1410–1414. doi: 10.1177/154193129503902111 CrossRefGoogle Scholar
  82. 82.
    Prothero JD, Parker DE (2003) A unified approach to presence and motion sickness. In: Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications, and human performance issues. Lawrence Erlbaum, New York, pp 47–66Google Scholar
  83. 83.
    Riecke BE (2003) How far can we get with just visual information? Path integration and spatial updating studies in virtual reality. vol. 8, Berlin
  84. 84.
    Riecke BE (2006) Simple user-generated motion cueing can enhance self-motion perception (Vection) in virtual reality. In: Proceedings of the ACM symposium on virtual reality software and technology (VRST) Limassol, ACM, Cyprus, pp 104–107. doi: 10.1145/1180495.1180517
  85. 85.
    Riecke BE (2009) Cognitive and higher-level contributions to illusory self-motion perception (“vection”): does the possibility of actual motion affect vection? Jpn J Psychon Sci 28(1):135–139MathSciNetGoogle Scholar
  86. 86.
    Riecke BE (2011) Compelling self-motion through virtual environments without actual self-motion–using self-motion illusions (“Vection”) to improve user experience in VR. In: Kim J-J (ed) Virtual reality, pp 149–176. doi: 10.5772/13150. InTech.
  87. 87.
    Riecke BE, Feuereissen D (2012) To move or not to move: can active control and user-driven motion cueing enhance self-motion perception (“Vection”) in virtual reality? ACM symposium on applied perception SAP (accepted full paper) ACM. Los Angeles, USA, pp 1–8Google Scholar
  88. 88.
    Riecke BE, Feuereissen D, Rieser JJ (2009) Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Trans Appl Percept 6(3):1–22. doi: 10.1145/1577755.1577763 CrossRefGoogle Scholar
  89. 89.
    Riecke BE, Feuereissen D, Rieser JJ, McNamara TP (2011) Spatialized sound enhances biomechanically-induced self-motion illusion (vection). Proceedings of the 2011 annual conference on Human factors in computing systems, CHI ’11. ACM SIG.CHI, Vancouver, Canada, pp 2799–2802.
  90. 90.
    Riecke BE, Feuereissen D, Rieser JJ, McNamara TP (2012) Self-motion illusions (Vection) in VR–are they good for anything? IEEE virtual reality 2012. Orange County, USA, pp 35–38: doi: 10.1109/VR.2012.6180875
  91. 91.
    Riecke BE, Schulte-Pelkum J, Avraamides MN, Bülthoff HH (2004) Enhancing the visually induced self-motion illusion (Vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual workshop presence 2004, pp 125–132. doi:
  92. 92.
    Riecke BE, Schulte-Pelkum J, Avraamides MN, Heyde MVD, Bülthoff HH (2006) Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl Percept (TAP) 3(3):194–216. doi: 10.1145/1166087.1166091 CrossRefGoogle Scholar
  93. 93.
    Riecke BE, Schulte-Pelkum J,Caniard F (2006)Visually induced linear vection is enhanced by small physical accelerations. 7th international multisensory research forum (IMRF). Dublin, IrelandGoogle Scholar
  94. 94.
    Riecke BE, Schulte-Pelkum J, Caniard F, Bülthoff HH (2005a) Towards lean and elegant self-motion simulation in virtual reality. Proceedings of IEEE virtual reality 2005. Bonn, Germany, pp 131–138.
  95. 95.
    Riecke BE, Väljamäe A, Schulte-Pelkum J (2009) Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Trans Appl Percept 6(2):1–27CrossRefGoogle Scholar
  96. 96.
    Riecke BE, Västfjäll D, Larsson P, Schulte-Pelkum J (2005) Top-down and multi-modal influences on self-motion perception in virtual reality. Proceedings of HCI international 2005. Las Vegas, USA, pp 1–10.
  97. 97.
    Rieser JJ (1989) Access to knowledge of spatial structure at novel points of observation. J Exp Psychol Learn Mem Cogn 15(6):1157–1165. doi: 10.1037/0278-7393.15.6.1157 CrossRefGoogle Scholar
  98. 98.
    Rieser JJ, Pick HL, Ashmead D, Garing AE (1995) Calibration of human locomotion and models of perceptual-motor organization. J Exp Psychol Hum Percept Perform 21(3):480–497CrossRefGoogle Scholar
  99. 99.
    Sasaki K, Seno T, Yamada Y, Miura K (2012) Emotional sounds influence vertical vection. Perception 41(7):875–877CrossRefGoogle Scholar
  100. 100.
    Schulte-Pelkum J (2007) Perception of self-motion: vection experiments in multi-sensory virtual environments (PhD thesis). Ruhr-Universität Bochum.
  101. 101.
    Schulte-Pelkum J, Riecke BE, von der Heyde M, Bülthoff HH (2003) Circular vection is facilitated by a consistent photorealistic scene. Talk presented at the presence 2003 Conference. Aalborg, DenmarkGoogle Scholar
  102. 102.
    Seno T, Hasuo E, Ito H, Nakajima Y (2012) Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception 41(5):577–593CrossRefGoogle Scholar
  103. 103.
    Seno T, Ito H, Sunaga S (2009) The object and background hypothesis for vection. Vis Res 49(24):2973–2982. doi: 10.1016/j.visres.2009.09.017 CrossRefGoogle Scholar
  104. 104.
    Seno T, Ito H, Sunaga S (2011a) Inconsistent locomotion inhibits vection. Perception 40(6):747CrossRefGoogle Scholar
  105. 105.
    Seno T, Ito H, Sunaga S (2011b) Attentional load inhibits vection. Attention Percept Psychophysics 73(5):1467–1476. doi: 10.3758/s13414-011-0129-3 CrossRefGoogle Scholar
  106. 106.
    Seno T, Ogawa M, Ito H, Sunaga S (2011) Consistent air flow to the face facilitates vection. Perception 40(10):1237–1240CrossRefGoogle Scholar
  107. 107.
    Seno T, Palmisano S, Ito H, Sunaga S (2012) Vection can be induced without global-motion awareness. Perception 41(4):493–497. doi: 10.1068/p7206 CrossRefGoogle Scholar
  108. 108.
    Seno T, Yamada Y, lhaya, K (2011) Narcissistic people cannot be moved easily by visual stimulation. Perception 40(11):1390–1392. doi: 10.1068/p7062 Google Scholar
  109. 109.
    Siegle JH, Campos JL, Mohler BJ, Loomis JM, Bülthoff HH (2009) Measurement of instantaneous perceived self-motion using continuous pointing. Exp Brain Res 195(3):429–444. doi: 10.1007/s00221-009-1805-6 CrossRefGoogle Scholar
  110. 110.
    Slater M, Steed A, McCarthy J, Maringelli F (1998) The influence of body movement on subjective presence in virtual environments. Hum Factors 40(3):469–477CrossRefGoogle Scholar
  111. 111.
    Steinicke F, Bruder G, Hinrichs K, Jerald J, Frenz H, Lappe M (2009) Real walking through virtual environments by redirection techniques. J Virtual Reality Broadcast 6(2)Google Scholar
  112. 112.
    Trutoiu LC, Mohler BJ, Schulte-Pelkum J, Bülthoff HH (2009) Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Comput Graph 33(1):47–58. doi: 10.1016/j.cag.2008.11.008 CrossRefGoogle Scholar
  113. 113.
    Trutoiu LC, Streuber S, Mohler BJ, Schulte-Pelkum J, Bülthoff HH (2008) Tricking people into feeling like they are moving when they are not paying attention. Applied perception in graphics and visualization (APGV) 190–190.
  114. 114.
    Urbantschitsch V (1897) Über Störungen des Gleichgewichtes und Scheinbewegungen. Z Ohrenheilk 31:234–294Google Scholar
  115. 115.
    van der Steen FAM (1998) Self-motion perception (PhD thesis). Technical University Delft, NetherlandsGoogle Scholar
  116. 116.
    van der Steen FAM, Brockhoff PTM (2000) Induction and impairment of saturated yaw and surge vection. Percept Psychophysics 62(1):89–99Google Scholar
  117. 117.
    Väljamäe A (2007) Sound for multisensory motion simulators (PhD thesis). Chalmers University of Technology, Gothenburg, SwedenGoogle Scholar
  118. 118.
    Väljamäe A (2009) Auditorily-induced illusory self-motion: A review. Brain Res Rev 61(2):240–255. doi: 10.1016/j.brainresrev.2009.07.001 CrossRefGoogle Scholar
  119. 119.
    Väljamäe A, Alliprandini PMZ, Alais D, Kleiner M (2009) Auditory landmarks enhance circular vection in multimodal virtual reality. J Audio Eng Soc 57(3):111–120Google Scholar
  120. 120.
    Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2006) Vibrotactile enhancement of auditory induced self-motion and spatial presence. J Acoust Eng Soc 54(10):954–963Google Scholar
  121. 121.
    Wallach H (1940) The role of head movements and vestibular and visual cues in sound localization. J Exp Psychol 27(4):339–368MathSciNetCrossRefGoogle Scholar
  122. 122.
    Warren HC (1895) Sensations of rotation. Psychol Rev 2(3):273–276. doi: 10.1037/h0074437 MathSciNetCrossRefGoogle Scholar
  123. 123.
    Warren R, Wertheim AH (eds) (1990) Perception and control of self-motion. Erlbaum, LondonGoogle Scholar
  124. 124.
    Wertheim AH, Reymond G (2007) Neural noise distorts perceived motion: the special case of the freezing illusion and the Pavard and Berthoz effect. Exp Brain Res 180:569–576. doi: 10.1007/s00221-007-0887-2 CrossRefGoogle Scholar
  125. 125.
    Wolpert L (1990) Field-of-view information for self-motion perception. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 101–126Google Scholar
  126. 126.
    Wong SCP, Frost BJ (1981) The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Percept Psychophysics 30(3):228–236CrossRefGoogle Scholar
  127. 127.
    Wood RW (1895) The “Haunted Swing” illusion. Psychol Rev 2(3):277–278. doi: 10.1037/h0073333 CrossRefGoogle Scholar
  128. 128.
    Wright WG (2009) Linear vection in virtual environments can be strengthened by discordant inertial input. 31st annual international conference of the IEEE EMBS (Engineering in Medicine and Biology Society). Minneapolis, USA, pp 1157–1160. doi: 10.1109/IEMBS.2009.5333425
  129. 129.
    Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual andinertial motion: More than weighted summation of sensory inputs. J Vestib Res Equilibr Orientation 15(4):185–195Google Scholar
  130. 130.
    Wright WG, DiZio P, Lackner JR (2006) Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. J Vestib Res 16(1–2):23–28Google Scholar
  131. 131.
    Yabe Y, Taga G (2008) Treadmill locomotion captures visual perception of apparent motion. Exp Brain Res 191(4):487–494. doi: 10.1007/s00221-008-1541-3 CrossRefGoogle Scholar
  132. 132.
    Yabe Y, Watanabe H, Taga G (2011) Treadmill experience alters treadmill effects on perceived visual motion. PLoS ONE 6(7):e21642. doi: 10.1371/journal.pone.0021642 CrossRefGoogle Scholar
  133. 133.
    Young LR, Oman CM, Dichgans JM (1975) Influence of head orientation on visually induced pitch and roll sensation. Aviat Space Environ Med 46(3):264–268Google Scholar
  134. 134.
    Young LR, Shelhamer M (1990) Weightlessness enhances the relative contribution of visually-induced self-motion. In: Warren R, Wertheim AH (eds) Perception and control of self-motion: resources for ecological psychology. Erlbaum, HillsdaleGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Simon Fraser UniversitySurreyCanada
  2. 2.Vechta UniversityVechtaGermany

Personalised recommendations