Multimodal Rendering of Walking Over Virtual Grounds

  • Maud Marchal
  • Gabriel Cirio
  • Yon Visell
  • Federico Fontana
  • Stefania Serafin
  • Jeremy Cooperstock
  • Anatole Lécuyer


The addition of multimodal feedback during navigation in a virtual environment is fundamental when aiming at fully immersive and realistic simulations. Several visual, acoustic, haptic or vibrotactile perceptual cues can be generated when walking over a ground surface. Such sensory feedback can provide crucial and varied information regarding either the ground material itself, the properties of the ground surface such as slope or elasticity, the surrounding environment, the specificities of the foot-floor interaction such as gait phase or forces, or even users’ emotions. This chapter addresses the multimodal rendering of walking over virtual ground surfaces, incorporating haptic, acoustic and graphic rendering to enable truly multimodal walking experiences.


Virtual Ground Multimodal Rendering Acoustic Feedback Haptic Feedback Virtual Environments  Virtual Reality 


  1. 1.
    Adjémian F, Evesque P (2002) Different regimes of stick-slip in granular matter: from quasi- periodicity to randomness. In: EGS XXVII general assemblyGoogle Scholar
  2. 2.
    Alava MJ, Nukala PKVV, Zapperi S (2006) Statistical models of fracture. Adv Phys 55(3):349–476Google Scholar
  3. 3.
    Avanzini F, Rocchesso D (2001) Modeling collision sounds: non-linear contact force. In: Proceedings of COST-G6 conference on digital audio effects, pp 61–66Google Scholar
  4. 4.
    Avanzini F, Serafin S, Rocchesso D (2005) Interactive simulation of rigid body interaction with friction-induced sound generation. IEEE Trans Speech Audio Process 13(5):1073–1081CrossRefGoogle Scholar
  5. 5.
    Baldassarri A, Dalton F, Petri A, Zapperi S, Pontuale G, Pietronero L (2006) Brownian forces in sheared granular matter. Phys Rev Lett 96(11):118002Google Scholar
  6. 6.
    Barrass S, Adcock M (2002) Interactive granular synthesis of haptic contact sounds. In: Proceedings of AES. 22nd international conference on virtual, synthetic and entertainment audioGoogle Scholar
  7. 7.
    Blesser B (2001) An interdisciplinary synthesis of reverberation viewpoints. J Audio Eng Soc 49(10):867–903Google Scholar
  8. 8.
    Bresciani J-P, Ernst MO, Drewing K, Bouyer G, Maury V, Kheddar A (2005) Feeling what you hear: auditory signals can modulate tactile tap perception. Exp Brain Res 162:172–180Google Scholar
  9. 9.
    Burdea GC, Akay M (1996) Force and touch feedback for virtual reality. Wiley, New YorkGoogle Scholar
  10. 10.
    Christensen RR, Hollerbach JM, Xu Y, Meek SG (2000) Inertial-force feedback for the treadport locomotion interface. Presence: Teleoper Virtual Environ 9(1):1–14Google Scholar
  11. 11.
    Chueng P (2002) Designing sound canvas: the role of expectation and discrimination. In: Proceedings of ACM CHI extended abstracts on human factors in computing systems. pp 848–849Google Scholar
  12. 12.
    Cirio G, Marchal M, Hillaire S, Lécuyer A (2011) Six degrees-of-freedom haptic interaction with fluids. IEEE Trans Visual Comput Graph 17(11):1714–1727Google Scholar
  13. 13.
    Cirio G, Marchal M, Lécuyer A, Cooperstock J (2012) Vibrotactile rendering of splashing fluids. IEEE Trans Haptics 99:1Google Scholar
  14. 14.
    Cook PR (2002) Modeling Bill’s gait: analysis and parametric synthesis of walking sounds. In: Proceedings of audio engineering society 22nd conference on virtual, synthetic and entertainment audio, Espoo, FinlandGoogle Scholar
  15. 15.
    Cook PR (2002) Real sound synthesis for interactive applications. AK Peters, NatickGoogle Scholar
  16. 16.
    Courtney A, Chow HM (2000) A study of tile design for tactile guide pathways. Int J Ind Ergon 25(6):693–698CrossRefGoogle Scholar
  17. 17.
    Cress DH (1978) Terrain considerations and data base development for the design and testing of devices to detect intruder-induced ground motion. Technical report M-78-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MississippiGoogle Scholar
  18. 18.
    Crossan A, Williamson J, Murray-Smith R (2004) Haptic granular synthesis: targeting, visualisation and texturing. In: Proceedings of international symposium on non-visual & multimodal visualization, pp 527–532Google Scholar
  19. 19.
    Dalton F, Farrelly F, Petri A, Pietronero L, Pitolli L, Pontuale G (2005) Shear stress fluctuations in the granular liquid and solid phases. Phys Rev Lett 95(13):138001Google Scholar
  20. 20.
    Darken RP, Cockayne WR, Carmein D (1997) The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of the 10th annual ACM symposium on user interface software and technology. pp 213–221Google Scholar
  21. 21.
    Delle Monache S, Polotti P, Rocchesso D (2010) A toolkit for explorations in sonic interaction design. In: Proceedings of the ACM 5th audio mostly conference. pp 1–7Google Scholar
  22. 22.
    Dickstein R, Plax M (2012) Metronome rate and walking foot contact time in young adults. Percept Mot Skills 114(1):21–28CrossRefGoogle Scholar
  23. 23.
    Dixon SJ, Collop AC, Batt ME (2000) Surface effects on ground reaction forces and lower extremity kinematics in running. Med Sci Sports Exerc 32(11):1919–1926Google Scholar
  24. 24.
    Dixon SJ, Cooke A (2004) Shoe-surface interaction in tennis. In: Hung GK, Pallis JM (eds) Biomedical engineering principles in sports. Kluwer Academic/Plenum Publishers, New York, p 125Google Scholar
  25. 25.
    Ekimov A, Sabatier J (2006) Vibration and sound signatures of human footsteps in buildings. J Acoust Soc Am 120:762Google Scholar
  26. 26.
    Ekimov A, Sabatier J (2008) A review of human signatures in urban environments using acoustic and seismic methods. In: Proceedings of IEEE technologies for homeland securityGoogle Scholar
  27. 27.
    Farnell AJ (2007) Marching onwards—procedural synthetic footsteps for video games and animation. In: Pd conventionGoogle Scholar
  28. 28.
    Farrington SM (1998) Invariant acoustic cues for determining source characteristics of footstep sounds. Master’s thesis, State University of New YorkGoogle Scholar
  29. 29.
    Ferris DP, Louie M, Farley CT (1998) Running in the real world: adjusting leg stiffness for different surfaces. Proc R Soc B: Biol Sci 265(1400):989Google Scholar
  30. 30.
    Fontana F, Bresin R (2003) Physics-based sound synthesis and control: crushing, walking and running by crumpling sounds. In: Proceedings of colloquium on musical informatics, Florence, Italy, pp 109–114Google Scholar
  31. 31.
    Fontana F, Morreale F, Regia-Corte T, Lécuyer A, Marchal M (2011) Auditory recognition of floor surfaces by temporal and spectral cues of walking. In: Proceedings of international conference on auditory displayGoogle Scholar
  32. 32.
    Freeman J, Lessiter J (2001) Hear there & everywhere: the effects of multi-channel audio on presence. In: Proceedings of ICAD 2001, pp 231–234Google Scholar
  33. 33.
    Fukumoto M, Sugimura T (2001) Active click: tactile feedback for touch panels. In: Proceedings of ACM CHI extended abstracts. pp 121–122Google Scholar
  34. 34.
    Funkhouser T, Tsingos N, Jot JM (2003) Survey of methods for modeling sound propagation in interactive virtual environment systems. PresenceGoogle Scholar
  35. 35.
    Galbraith F, Barton M (1970) Ground loading from footsteps. J Acoust Soc Am 48:1288–1292Google Scholar
  36. 36.
    Gaver WW (1993) What in the world do we hear? An ecological approach to auditory event perception. Ecol Psychol 5(1):1–29MathSciNetCrossRefGoogle Scholar
  37. 37.
    Gibson JJ (1977) The theory of affordances. In: Erlbaum L (eds) Perceiving, Acting, and Knowing. Erlbaum, HillsdaleGoogle Scholar
  38. 38.
    Giordano BL, McAdams S, Rocchesso D (2010) Integration of acoustical information in the perception of impacted sound sources: the role of information accuracy and exploitability. J Exp Psychol: Hum Percept Perform 36(2):462–476CrossRefGoogle Scholar
  39. 39.
    Giordano BL, McAdams S, Visell Y, Cooperstock J, Yao H-Y, Hayward V (2008) Non-visual identification of walking grounds. J Acous Soc Am 123(5):3412Google Scholar
  40. 40.
    Hachisu T, Cirio G, Marchal M, Lécuyer A, Kajimoto H (2011) Pseudo-haptic feedback augmented with visual and tactile vibrations. In: Proceedings of international symposium on VR innovations, pp 331–332Google Scholar
  41. 41.
    Hardin EC, van den Bogert AJ, Hamill J (2004) Kinematic adaptations during running: effects of footwear, surface, and duration. Med Sci Sports Exerc 36(5):838Google Scholar
  42. 42.
    Hayward V (2007) Physically-based haptic synthesis. In: Lin M, Otaduy M (eds) Haptic rendering: foundations, algorithms and applications. AK Peters, NatickGoogle Scholar
  43. 43.
    Hayward V, Astley OR, Cruz-Hernandez M, Grant D, Robles-De-La-Torre G (2004) Haptic interfaces and devices. Sens Rev 24(1):16–29Google Scholar
  44. 44.
    Hayward V, Maclean K (2007) Do it yourself haptics, part I. IEEE Robot Autom 14:88–104Google Scholar
  45. 45.
    Herrmann HJ, Roux S (1990) Statistical models for the fracture of disordered media. North Holland, AmsterdamGoogle Scholar
  46. 46.
    Hollerbach J (2008) Locomotion interfaces and rendering. In: Lin M, Otaduy M (eds) Haptic rendering: foundations, algorithms and applications. AK Peters, NatickGoogle Scholar
  47. 47.
    Hötting K, Röder B (2004) Hearing cheats touch, but less in congenitally blind than in sighted individuals. Psychol Sci 15:60–64Google Scholar
  48. 48.
    Iwata H (1999) Walking about virtual environments on an infinite floor. In: Proceedings of IEEE international conference on virtual reality, pp 286–293Google Scholar
  49. 49.
    Iwata H (2008) Haptic interface. In: Sears A, Jacko JA (eds) The human-computer interaction handbook, 2nd edn. Lawrence Erlbaum Assoc, New YorkGoogle Scholar
  50. 50.
    Kennedy PM, Inglis JT (2002) Distribution and behaviour of glabrous cutaneous receptors in the human foot sole. J Physiol 583(3):731–742Google Scholar
  51. 51.
    Kinsella-Shaw JM, Shaw B, Turvey MT (1992) Perceiving “walk-on-able” slopes. Ecol Psychol 4(4):223–239CrossRefGoogle Scholar
  52. 52.
    Klatzky RL, Pai DK, Krotkov EP (2000) Perception of material from contact sounds. Presence: Teleoper Virtual Environ 9(4):399–410CrossRefGoogle Scholar
  53. 53.
    Kobayashi Y, Osaka R, Hara T, Fujimoto H (2008) How accurately people can discriminate the differences of floor materials with various elasticities. IEEE Trans Neural Syst Rehabil Eng 16(1):99–105CrossRefGoogle Scholar
  54. 54.
    Kobayashi Y, Takashima T, Hayashi M, Fujimoto H (2005) Gait analysis of people walking on tactile ground surface indicators. IEEE Trans Neural Syst Rehabil Eng 13(1):53–59CrossRefGoogle Scholar
  55. 55.
    Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Visual Comput Graph 12(2):219–230CrossRefGoogle Scholar
  56. 56.
    LaViola JJ, Feliz DA, Keefe DF, Zeleznik RC (2001) Hands-free multi-scale navigation in virtual environments. In: Proceedings of the ACM symposium on interactive 3D graphics. pp 9–15Google Scholar
  57. 57.
    Law AW, Ip J, Peck B, Visell Y, Kry PG, Cooperstock JR (2009) Multimodal floor for immersive environments. In: ACM SIGGRAPH emerging technologiesGoogle Scholar
  58. 58.
    Lécuyer A (2009) Simulating haptic feedback using vision: a survey of research and applications of pseudo-haptic feedback. Presence: Teleoper Virtual Environ 18(1):39–53Google Scholar
  59. 59.
    Lécuyer A, Burkhardt J-M, Etienne L (2004) Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. In: Proceedings of SIGCHI conference on human factors in computing systems, pp 239–246Google Scholar
  60. 60.
    Lécuyer A, Burkhardt J-M, Henaff J-M, Donikian S (2006) Camera motions improve sensation of walking in virtual environments. In: Proceedings of IEEE international conference on virtual reality, pp 11–18Google Scholar
  61. 61.
    Li X, Logan RJ, Pastore RE (1991) Perception of acoustic source characteristics: walking sounds. J Acoust Soc Am 90(6):3036–3049CrossRefGoogle Scholar
  62. 62.
    MacLean KE (2008) Foundations of transparency in tactile information design. IEEE Trans Haptics 1(2):84–95MathSciNetCrossRefGoogle Scholar
  63. 63.
    MacLellan MJ, Patla AE (2006) Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp Brain Res 173(3):521–530Google Scholar
  64. 64.
    Mahvash M, Hayward V (2001) Haptic rendering of cutting: a fracture mechanics approach. Haptics-e 2(3):1–12Google Scholar
  65. 65.
    Marchal M, Lécuyer A, Cirio G, Bonnet L, Emily M (2010) Walking up and down in immersive virtual worlds: novel interactive techniques based on visual feedback. In: Proceedings of IEEE symposium on 3D user interface, pp 19–26Google Scholar
  66. 66.
    Marigold DS, Patla AE (2005) Adapting locomotion to different surface compliances: neuromuscular responses and changes in movement dynamics. J Neurophysiol 94(3):1733Google Scholar
  67. 67.
    Michon JA (ed) (1993) Generic intelligent driver support. CRC Press, Boca RatonGoogle Scholar
  68. 68.
    Morioka M, Whitehouse DJ, Griffin MJ (2008) Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosens Mot Res 25(2):101–112Google Scholar
  69. 69.
    Moritz CT, Farley CT (2004) Passive dynamics change leg mechanics for an unexpected surface during human hopping. J Appl Physiol 97(4):1313Google Scholar
  70. 70.
    Moritz CT, Greene SM, Farley CT (2004) Neuromuscular changes for hopping on a range of damped surfaces. J Appl Physiol 96(5):1996Google Scholar
  71. 71.
    Nashel A, Razzaque S (2003) Tactile virtual buttons for mobile devices. In: Proceedings of ACM CHI. pp 854–855Google Scholar
  72. 72.
    Nasuno S, Kudrolli A, Bak A, Gollub JP (1998) Time-resolved studies of stick-slip friction in sheared granular layers. Phys Rev E 58(2):2161–2171Google Scholar
  73. 73.
    Nasuno S, Kudrolli A, Gollub JP (1997) Friction in granular layers: hysteresis and precursors. Phys Rev Lett 79(5):949–952Google Scholar
  74. 74.
    Nordahl R (2006) Increasing the motion of users in photorealistic virtual environments by utilizing auditory rendering of the environment and ego-motion. In: Proceedings of presence, pp 57–62Google Scholar
  75. 75.
    Norman D (2007) The design of future things. Basic Books, New YorkGoogle Scholar
  76. 76.
    Papetti S, Civolani M, Fontana F (2011) Rhythmnshoes: a wearable foot tapping interface with audio-tactile feedback. In: Proceedings of international conference of new interfaces for musical expressionGoogle Scholar
  77. 77.
    Papetti S, Fontana F, Civolani M, Berrezag A, Hayward V (2010) Audio-tactile display of ground properties using interactive shoes. In: Haptic and audio interaction design, pp 117–128Google Scholar
  78. 78.
    Pastore RE, Flint JD, Gaston JR, Solomon MJ (2008) Auditory event perception: the source-perception loop for posture in human gait. Percept Psychophys 70(1):13–29CrossRefGoogle Scholar
  79. 79.
    Perreault S, Gosselin CM (2008) Cable-driven parallel mechanisms: application to a locomotion interface. J Mech Des 130:102301Google Scholar
  80. 80.
    Poupyrev I, Maruyama S, Rekimoto J (2002) Ambient touch: designing tactile interfaces for handheld devices. In: Proceedings of ACM UIST. pp 51–60Google Scholar
  81. 81.
    Razzaque S, Kohn Z, Whitton MC (2001) Redirected walking. In: Proceedings of Eurographics, pp 289–294Google Scholar
  82. 82.
    Rosburg T (2008) Tactile ground surface indicators in public places. In: Grunwald M (ed) Human haptic perception: basics and applications. Birkhäuser, Basel, pp 491–499Google Scholar
  83. 83.
    Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89Google Scholar
  84. 84.
    Rovan J, Hayward V (2000) Typology of tactile sounds and their synthesis in gesture-driven computer music performance. In: Wanderley M, Battier M (eds) Trends in gestural control of music. Editions IRCAM, ParisGoogle Scholar
  85. 85.
    Rovers AF, van Essen H (2006) Guidelines for haptic interpersonal communication applications. Virtual Real 9:177–191CrossRefGoogle Scholar
  86. 86.
    Sanders RD, Scorgie MA (2002) The effect of sound delivery methods on a user’s sense of presence in a virtual environmentGoogle Scholar
  87. 87.
    Schafer RM (1977) The tuning of the world. Random House, New YorkGoogle Scholar
  88. 88.
    Serafin S, Fontana F, Turchet L, Papetti S (2012) Auditory rendering and display of interactive floor cues. In: Fontana F, Visell Y (eds) Walking with the senses, Chap 7. Logos Verlag, Berlin, pp 123–152Google Scholar
  89. 89.
    Serafin S, Turchet L, Nordahl R, Dimitrov S, Berrezag A, Hayward V (2010) Identification of virtual grounds using virtual reality haptic shoes and sound synthesis. In: Proceedings of Eurohaptics, p 61Google Scholar
  90. 90.
    Slater M, Usoh M, Steed A (1995) Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans Comput-Hum Inter 2(3):201–219Google Scholar
  91. 91.
    Srinivasan MA, Basdogan C (1997) Haptics in virtual environments: taxonomy, research status, and challenges. Comput Graph 21(4):393–404CrossRefGoogle Scholar
  92. 92.
    Stiles VH, James IT, Dixon SJ, Guisasola IN (2009) Natural turf surfaces: the case for continued research. Sports Med 39(1):65Google Scholar
  93. 93.
    Styns F, van Noorden L, Moelants D, Leman M (2007) Walking on music. Hum Movem Sci 26(5):769–785CrossRefGoogle Scholar
  94. 94.
    Swapp D, Williams J, Steed A (2010) The implementation of a novel walking interface within an immersive display. In: Proceedings of IEEE Symposium on 3D user interfaces, pp 71–74Google Scholar
  95. 95.
    Tax A, van Wezel B, Dietz V (1995) Bipedal reflex coordination to tactile stimulation of the sural nerve during human running. J Neurophysiol 73(5):1947–1964Google Scholar
  96. 96.
    Templeman JN, Denbrook PS, Sibert LE (1999) Virtual locomotion: walking in place through virtual environments. Presence: Teleoper Virtual Environ 8(6):598–617Google Scholar
  97. 97.
    Terziman L, Lécuyer A, Hillaire S, Wiener JM (2009) Can camera motions improve the perception of traveled distance in virtual environments? In: Proceedings of IEEE international conference on virtual reality, pp 131–134Google Scholar
  98. 98.
    Terziman L, Marchal M, Multon F, Arnaldi B, Lécuyer A (2012) The king-kong effects: improving sensation of walking in VR with visual and tactile vibrations at each step. In: Proceedings of IEEE symposium on 3D user interfaces, pp 19–26Google Scholar
  99. 99.
    Tramberend H, Hasenbrink F, Eckel G, Lechner U, Goebel M (1997) CyberStage—an advanced virtual environment. ERCIM News 31:22–23Google Scholar
  100. 100.
    Trulsson M (2001) Mechanoreceptive afferents in the human sural nerve. Exp Brain Res 137(1):111–116CrossRefGoogle Scholar
  101. 101.
    Turchet L, Marchal M, Lécuyer A, Serafin S, Nordahl R (2010) Influence of visual feedback for perceiving walking over bumps and holes in desktop VR. In: Proceedings of 17th ACM symposium on virtual reality software and technology, pp 139–142Google Scholar
  102. 102.
    Turchet L, Serafin S, Nordahl R (2010) Physically based sound synthesis and control of footsteps sounds. In: Proceedings of conference on digital audio effectsGoogle Scholar
  103. 103.
    van den Doel K, Kry PG, Pai DK (2001) FoleyAutomatic: physically-based sound effects for interactive simulation and animation. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques pp 537–544Google Scholar
  104. 104.
    van Ulzen NR, Lamoth CJC, Daffertshofer A, Semin GR, Beek PJ (2008) Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neurosci Lett 432(2):88–93Google Scholar
  105. 105.
    Velazquez R (2008) On-shoe tactile display. In: Proceedings of the IEEE international workshop on haptic audio visual environment and their applicationsGoogle Scholar
  106. 106.
    Visell Y, Cooperstock J (2010) Design of a vibrotactile display via a rigid surface. In: Proceedings of IEEE haptics symposium, pp 133–140Google Scholar
  107. 107.
    Visell Y, Cooperstock J, Giordano BL, Franinovic K, Law A, McAdams S, Jathal K, Fontana F (2008) A vibrotactile device for display of virtual ground materials in walking. In: Proceedings of Eurohaptics 2008, pp 420–426Google Scholar
  108. 108.
    Visell Y, Fontana F, Giordano BL, Nordahl R, Serafin S, Bresin R (2009) Sound design and perception in walking interactions. Int J Hum-Comput Studies 67:947–959Google Scholar
  109. 109.
    Visell Y, Giordano BL, Millet G, Cooperstock JR (2011) Vibration influences haptic perception of surface compliance during walking. PLoS one 6(3):e17697Google Scholar
  110. 110.
    Visell Y, Law A, Cooperstock JR (2009) Touch is everywhere: floor surfaces as ambient haptic interfaces. IEEE Trans Haptics 2:148–159Google Scholar
  111. 111.
    Visell Y, Law A, Smith S, Rajalingham R, Cooperstock JR (2010) Contact sensing and interaction techniques for a distributed multimodal floor display. In: Proceedings of IEEE Symposium on 3D user interfaces. pp 75–78Google Scholar
  112. 112.
    Visell Y, Law A, Ip J, Smith S, Cooperstock JR (2010) Interaction capture in immersive virtual environments via an intelligent floor surface. In: Proceedings of IEEE international conference on virtual reality, pp 313–314Google Scholar
  113. 113.
    Watters BG (1965) Impact noise characteristics of female hard-heeled foot traffic. J Acoust Soc Am 37:619–630CrossRefGoogle Scholar
  114. 114.
    Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo DR (ed) The skin senses. Thomas, SpringfieldGoogle Scholar
  115. 115.
    Wells C, Ward LM, Chua R, Inglis JT (2003) Regional variation and changes with ageing in vibrotactile sensitivity in the human footsole. J Gerontol A Biol Sci Med Sci 58(8):B680–B686CrossRefGoogle Scholar
  116. 116.
    Zehr EP, Stein RB, Komiyama T (1998) Function of sural nerve reflexes during human walking. J Physiol 507:305–314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maud Marchal
    • 1
    • 2
  • Gabriel Cirio
    • 1
  • Yon Visell
    • 3
  • Federico Fontana
    • 4
  • Stefania Serafin
    • 5
  • Jeremy Cooperstock
    • 6
  • Anatole Lécuyer
    • 1
  1. 1.INRIA RennesRennes CedexFrance
  2. 2.INSA RennesRennes CedexFrance
  3. 3.Drexel UniversityPhiladelphiaUSA
  4. 4.University of UdineUdineItaly
  5. 5.Aalborg UniversityAalborgDenmark
  6. 6.Mc Gill UniversityMontrealCanada

Personalised recommendations