Advertisement

DPE for Network Generation

  • David G. Green
  • Jing Liu
  • Hussein A. Abbass
Chapter

Abstract

Many scientists have mainly focused their attention on growing networks in which a new node is added to networks with time [1]. However, as indicated by Jin et al. [2], growth models of this type are quite inappropriate as models of the growth of social networks, and one of the reasons is although new vertices are of course added to social networks all the time, the timescale on which people make and break social connections is much shorter than the timescale on which vertices join or leave the network.

References

  1. 1.
    A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    E.M. Jin, M. Girvan, M.E.J. Newman, Structure of growing social networks. Phys. Rev. E 64, 046132 (2001)CrossRefGoogle Scholar
  3. 3.
    M.C. González, P.G. Lind, H.J. Herrmann, System of mobile agents to model social networks. Phys. Rev. Lett. 96, 088702 (2006)CrossRefGoogle Scholar
  4. 4.
    J.M. Kumpula, J.P. Onnela, J. Saramki, K. Kaski, J. Kertész, Emergence of communities in weighted networks. Phys. Rev. Lett. 99, 228701 (2007)CrossRefGoogle Scholar
  5. 5.
    H.M. Singer, I. Singer, H.J. Herrmann, Agent-based model for friendship in social networks. Phys. Rev. E 80, 026113 (2009)CrossRefGoogle Scholar
  6. 6.
    D.J. Watts, S.H. Strogatz, Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  7. 7.
    Z. Burda, J.D. Correia, A. Krzywicki, Statistical ensemble of scale-free random graphs. Phys. Rev. E 64, 046118 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Park, Y.C. Lai, N. Ye, Self-organized scale-free networks. Phys. Rev. E 72, 026131 (2005)CrossRefGoogle Scholar
  9. 9.
    Y.B. Xie, T. Zhou, B.H. Wang, Scale-free networks without growth. Phys. A 387, 1683–1688 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Ohkubo, K. Tanaka, T. Horiguchi, Generation of complex bipartite graphs by using a preferential rewiring process. Phys. Rev. E 72, 036120 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Godrèche, J.P. Bouchaud, M. Mézard, Entropy barriers and slow relaxation in some random walk models. J. Phys. A 28(23), L603 (1995)CrossRefGoogle Scholar
  12. 12.
    C. Godrèche and J. M. Luck. Nonequilibrium critical dynamics of ferromagnetic spin systems. J. Phys.: Condens. Matter, 14(7):1589, 2002.Google Scholar
  13. 13.
    J. Ohkubo, M. Yasuda, and K. Tanaka. Preferential urn model and nongrowing complex networks. Phys. Rev. E, 72:065104(R), 2005.Google Scholar
  14. 14.
    J. Ohkubo, M. Yasuda, K. Tanaka, Replica analysis of preferential urn model. J. Phys. Soc. Jpn. 75, 074802 (2006)CrossRefGoogle Scholar
  15. 15.
    M.R. Evans, Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42 (2000)CrossRefGoogle Scholar
  16. 16.
    M.R. Evans, T. Hanney, Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38(19), R195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    O. Pulkkinen, J. Merikoski, Phase transitions on markovian bipartite graphs—an application of the zero-range process. J. Stat. Phys. 119, 881 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    F.D. Neiman, Stylistic variation in evolutionary perspective: inferences from decorative diversity and interassemblage distance in illinois woodland ceramic assemblages. Am. Antiq. 60(1), 7–36 (1995)CrossRefGoogle Scholar
  19. 19.
    R.A. Bentley, S.J. Shennan, Cultural evolution and stochastic network growth. Am. Antiq. 68(3), 459–485 (2003)CrossRefGoogle Scholar
  20. 20.
    M.W. Hahn, R.A. Bentley, Drift as a mechanism for cultural change: an example from baby names. Proc. R. Soc. London, Ser. B 270, S120–S123 (2003)CrossRefGoogle Scholar
  21. 21.
    H.A. Herzog, R.A. Bentley, M.W. Hahn, Random drift and large shifts in popularity of dog breeds. Proc. R. Soc. London, Ser. B 271, S353–S356 (2004)CrossRefGoogle Scholar
  22. 22.
    R.A. Bentley, M.W. Hahn, S.J. Shennan, Random drift and culture change. Proc. R. Soc. London, Ser. B 271, 1443–1450 (2004)CrossRefGoogle Scholar
  23. 23.
    R.A. Bentley, S.J. Shennan, Random copying and cultural evolution. Science 309(5736), 877–879 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Zanette, S. Manrubia, Vertical transmission of culture and the distribution of family names. Phys. A 295, 1–8 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    M. Kimura, J.F. Crow, The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964)Google Scholar
  26. 26.
    J.F. Crow, M. Kimura, An Introduction to Population Genetics Theory (Harper and Row, New York, 1970)MATHGoogle Scholar
  27. 27.
    T.M. Liggett, Interacting Particle Systems (Springer, New York, 1985)CrossRefMATHGoogle Scholar
  28. 28.
    V. Sood, S. Redner, Voter model on heterogeneous graphs. Phys. Rev. Lett. 94, 178701 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Anghel, Z. Toroczkai, K.E. Bassler, G. Korniss, Competition-driven network dynamics: emergence of a scale-free leadership structure and collective efficiency. Phys. Rev. Lett. 92, 058701 (2004)CrossRefGoogle Scholar
  30. 30.
    T.S. Evans, A.D.K. Plato, Exact solution for the time evolution of network rewiring models. Phys. Rev. E 75, 056101 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Grönlund, P. Holme, Networking the seceder model: Group formation in social and economic systems. Phys. Rev. E 70, 036108 (2004)CrossRefGoogle Scholar
  32. 32.
    P. Dittrich, F. Liljeros, A. Soulier, W. Banzhaf, Spontaneous group formation in the seceder model. Phys. Rev. Lett. 84, 3205 (2000)CrossRefGoogle Scholar
  33. 33.
    P. Dittrich, The seceder effect in bounded space. InterJournal, 363, (2000)Google Scholar
  34. 34.
    A. Soulier, T. Halpin-Healy, The dynamics of multidimensional secession: fixed points and ideological condensation. Phys. Rev. Lett. 90, 258103 (2003)CrossRefGoogle Scholar
  35. 35.
    P. Erdős, A. Rényi, On random graphs. Publ. Math. (Debrecen) 6, 290–297 (1959)MathSciNetGoogle Scholar
  36. 36.
    T.G. Leishman, D.G. Green, S. Driver, Self-organization in simulated social networks, in Computer Mediated Social Networking LNAI5322, ed. by M. Purvis, B.T.R. Savarimuthu (Springer, Berlin, 2009), pp. 150–156CrossRefGoogle Scholar
  37. 37.
    G. Paperin, D.G. Green, T.G. Leishman, Dual phase evolution and self-organisation in networks, in Proceedings of the 7th International Conference on Simulated Evolution and Learning eds. by X. Li, M. Kirley, M. Zhang, D. Green, V. Ciesielski, H. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K.C. Tan, J. Branke, Y. Shi, Melbourne, Australia (Springer, 2008)Google Scholar
  38. 38.
    M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  39. 39.
    D.J. Watts, P.S. Dodds, M.E.J. Newman, Identity and search in social networks. Science 296(5571), 1302–1305 (2002)CrossRefGoogle Scholar
  40. 40.
    A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)CrossRefGoogle Scholar
  41. 41.
    G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)CrossRefGoogle Scholar
  42. 42.
    R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, A. Arenas, Self-similar community structure in a network of human interactions. Phys. Rev. E. 68, 065103(R) (2003)CrossRefGoogle Scholar
  43. 43.
    G. Caldarelli, A. Vespignani (eds.), Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science (World Scientific, Singapore, 2007)Google Scholar
  44. 44.
    A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Information TechnologyMonashClaytonAustralia
  2. 2.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of EducationXidian UniversityXi’anPeople’s Republic of China
  3. 3.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia

Personalised recommendations