Advertisement

Problem Solving and Evolutionary Computation

  • David G. GreenEmail author
  • Jing Liu
  • Hussein A. Abbass
Chapter

Abstract

Optimization algorithms impose an implicit network structure on fitness landscapes. For a given algorithm A operating on a problem that has a fitness landscape F, connections between solutions are defined by the transitions allowed by A.

Keywords

Genetic Algorithm Linear Programming Problem Travel Salesman Problem Search Technique Fitness Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Ansari, E. Hou, Computational intelligence for optimization (Kluwer Academic Publisher, Dordrecht, 1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    F. Glover, Tabu search: part 1. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    F. Glover, Tabu search: part 2. ORSA J. Comput. 2(1), 4–32 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Kennedy, R.C. Eberhart et al., Particle swarm optimization, in Proceedings of IEEE international conference on neural networks, vol. 4 (Perth, Australia, 1995), pp. 1942–1948Google Scholar
  6. 6.
    H.A. Abbass. MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach. In Proceedings of the 2001 Congress on Evolutionary Computation, volume 1, pages 207–214. IEEE, 2001.Google Scholar
  7. 7.
    H.A. Abbass. A single queen single worker honey bees approach to 3-SAT. In Proceedings of Genetic Evolutionary Computation Conference. San Mateo, CA: Morgan Kaufmann. Citeseer, 2001.Google Scholar
  8. 8.
    H.A. Abbass.An agent based approach to 3-SAT using marriage in honey-bees optimization. International journal of knowledge based intelligent systems, 6(2):64–71, 2002.Google Scholar
  9. 9.
    M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 26(1), 29–41 (2002)CrossRefGoogle Scholar
  10. 10.
    P. Larranaga, J.A. Lozano, Estimation of distribution algorithms: A new tool for evolutionary computation (Springer, Amsterdam, 2002)Google Scholar
  11. 11.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R.V.V. Vidal. Applied simulated annealing. Springer-Verlag, 1993.Google Scholar
  13. 13.
    H.J. Bremermann, Optimization through evolution and recombination, in Self-Organizing Systems, ed. by M.C. Yovitsetal (Spartan, Washington, D C, 1962)Google Scholar
  14. 14.
    R.M. Friedberg, A learning machine: Parti. IBMJ. 2(1), 2–13 (1958)MathSciNetGoogle Scholar
  15. 15.
    R.M. Friedberg, B. Dunham, J.H. North, A learning machine: Partii. IBMJ. 3(7), 282–287 (1959)MathSciNetGoogle Scholar
  16. 16.
    G. E. P. Box. Evolutionary operation: A method for increasing industrial productivity. Appl. Statistics, VI(2):81–101, 1957.Google Scholar
  17. 17.
    T. Bäck, U. Hammel, H.P. Schwefel, Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1(1), 3–17 (1997)CrossRefGoogle Scholar
  18. 18.
    J.H. Holland, Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 3, 297–314 (1962)CrossRefGoogle Scholar
  19. 19.
    I. Rechenberg. Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library translation No.1122, Farnbor-ough, Hants., U.K., 1965.Google Scholar
  20. 20.
    H. P. Schwefel. Projekt MHD-Staustrahlrohr: Experimentelle Optimierung einer Zweiphasendüse, Teil I. Technischer Bericht 11.034/68, 35, AEG Forschungsinstitut, Berlin, Germany, 1968.Google Scholar
  21. 21.
    L.J. Fogel, Autonomous automata. Ind. Res. 4, 14–19 (1962)Google Scholar
  22. 22.
    Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. New York: Springer-Verlag, 3rd Revised and Extended, 1996.Google Scholar
  23. 23.
    D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Wiley-IEEE Press: New York, 2nd Edition, 1999.Google Scholar
  24. 24.
    M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA, Reprint Edition, 1998)Google Scholar
  25. 25.
    T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, Oxford, 1996)Google Scholar
  26. 26.
    L. D. Whitley. The genitor algorithm and selection pressure: Whyrank-based allocation of reproductive trialsis best. In Proc. 3rd Int. Conf. on Genetic Algorithms, pages 116–121. San Mateo, CA: Morgan Kaufmann, 1989.Google Scholar
  27. 27.
    L. D. Whitley and J. Kauth. Genitor: A different genetic algorithm. In Proc. Rocky Mountain Conf. Artificia Intel., pages 118–130, Denver, CO., 1988.Google Scholar
  28. 28.
    K.A. De Jong, J. Sarma, Generation gaps revisited, Foundations of Genetic Algorithms 2 (San Mateo, CA, Morgan Kaufmann, 1993), pp. 19–28Google Scholar
  29. 29.
    J.H. Holland, Adaptation in Natural and Artificial Systems (Univ. of Michigan Press, Ann Arbor, MI, 1975)Google Scholar
  30. 30.
    J.H. Holland, J.S. Reitman, Cognitive systems based on adaptive algorithms, in Pattern-Directed Inference Systems, ed. by D.A. Waterman, F. Hayes-Roth (Academic, New York, 1978)Google Scholar
  31. 31.
    K. A. De Jong. Ananalysis of thebehavior of a class of genetic adaptive systems. Ph.D. dissertation, Univ. of Michigan, Ann, Arbor, 1975.Google Scholar
  32. 32.
    K. A. De Jong. On using genetic algorithms to search program spaces. In Proceedings of the 2nd Int. Conf. on Genetic Algorithms and Their Applications, pages 210–216. Hillsdale, NJ: Lawrence Erlbaum, 1987.Google Scholar
  33. 33.
    K.A. De Jong, Are genetic algorithms function optimizers?, Parallel Problem Solving from Nature 2 (Amsterdam, The Netherlands, Elsevier, 1992), pp. 3–13Google Scholar
  34. 34.
    K.A. De Jong, Genetic algorithms are not function optimizers, Foundations of Genetic Algorithms 2 (San Mateo, CA, Morgan Kaufmann, 1993), pp. 5–17Google Scholar
  35. 35.
    D. E. Goldberg. Genetic algorithms and rule learning in dynamic system control. In Proc. 1st Int. Conf. on Genetic Algorithms and Their Applications, pages 8–15. Hillsdale, NJ: Lawrence Erlbaum, 1985.Google Scholar
  36. 36.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989)Google Scholar
  37. 37.
    D. E. Goldberg. The theory of virtual alphabets. In Proc. 1st Workshop on Parallel Problem Solving from Nature, pages 13–22. Berlin, Germany: Springer, 1991.Google Scholar
  38. 38.
    D.E. Goldberg, K. Deb, J.H. Clark, Genetic algorithms, noise, and the sizing of populations. Complex Syst. 6, 333–362 (1992)zbMATHGoogle Scholar
  39. 39.
    D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid, accurate optimization of difficult problems using fast messy genetic algorithms. In Proc. 5th Int. Conf. on Genetic Algorithms, pages 56–64. San Mateo, CA: Morgan Kaufmann, 1993.Google Scholar
  40. 40.
    L.J. Fogel, On the organization of intellect (University of California, Los Angeles, Ph.D. dissertation, 1964)Google Scholar
  41. 41.
    G. H. Burgin. On playing two-person zero-sum games against nonmin-imax players. IEEE Trans. Syst. Sci. Cybern., SSC-5(4):369–370, 1969.Google Scholar
  42. 42.
    G.H. Burgin, Systems identification by quasilinearization and evolutionary programming. J. Cybern. 3(2), 56–75 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    J. W. Atmar. Speculation on the evolution of intelligence and its possible realization in machine form. Ph.D. dissertation, New Mexico State Univ., Las Cruces, 1976.Google Scholar
  44. 44.
    L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution (Wiley, New York, 1966)Google Scholar
  45. 45.
    D. B. Fogel. An evolutionary approach to the traveling sales man problem. Biological Cybern., :139–144, 1988.Google Scholar
  46. 46.
    D. B. Fogel. Evolving artificial intelligence. Ph.D. dissertation, Univ. of California, San Diego, 1992.Google Scholar
  47. 47.
    I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (Frommann-Holzboog, Stuttgart. Germany, 1973)Google Scholar
  48. 48.
    I. Rechenberg. Evolutionsstrategie’94. Werkstatt Bionik und Evolutionstechnik. Stuttgart, Germany: Frommann-Holzboog, 1994.Google Scholar
  49. 49.
    H.P. Schwefel, Evolutionsstrategie und numerische Optimierung Dissertation (Technische Universit Berlin, Germany, 1975)Google Scholar
  50. 50.
    H.P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995)Google Scholar
  51. 51.
    M. Herdy, Reproductive isolation as strategy parameter inhierarchically organized evolution strategies, Parallel Problem Solving from Nature 2 (Amsterdam, The Netherlands, Elsevier, 1992), pp. 207–217Google Scholar
  52. 52.
    F. Kursawe. A variant of evolution strategies for vector optimization. In Proc. 1st Workshop on Parallel Problem Solving from Nature, pages 193–197. Berlin, Germany: Springer, 1991.Google Scholar
  53. 53.
    A. Ostermeier, An evolution strategy with momentum adaptation of the random number distribution, Parallel Problem Solving from Nature 2 (Amsterdam, The Netherlands, Elsevier, 1992), pp. 197–206Google Scholar
  54. 54.
    A. Ostermeier, A. Gawelczyk, N. Hansen, Step-size adaptation based on nonlocal use of selection information, Parallel Problem Solving from Nature-PPSNIII (Berlin, Germany, Springer, 1994), pp. 189–198Google Scholar
  55. 55.
    G. Rudolph. Global optimization by means of distributed evolution strategies. In Proc. 1st Workshop on Parallel Problem Solving from Nature, pages 209–213. Berlin, Germany: Springer, 1991.Google Scholar
  56. 56.
    J. Klockgether and H. P. Schwefel. Two-phase nozzle and hollow core jet experiments. In D. G. Elliott, editor, Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics, pages 141–148. Pasadena, CA: California Institute of Technology, 1970.Google Scholar
  57. 57.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992)Google Scholar
  58. 58.
    M. L. Cramer. A representation for the adaptive generation of simple sequential programs. In Proc. 1st Int. Conf. on Genetic Algorithms and Their Applications, pages 183–187. Hillsdale, NJ: Lawrence Erlbaum, 1985.Google Scholar
  59. 59.
    J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo. Proc. 1st Annu. Conf. Genetic Programming. Cambridge, MA: MIT Press, 1996.Google Scholar
  60. 60.
    K.E. Kinnear, Advances in Genetic Programming (MIT Press, Cambridge, MA, 1994)Google Scholar
  61. 61.
    F. D. Francone, P. Nordin, and W. Banzhaf. Benchmarking the generalization capabilities of acompiling genetic programming system using sparse datasets. In Proc. 1st Annu. Conf on Genetic Programming, pages 72–80. Cambridge, MA: MIT Press, 1996.Google Scholar
  62. 62.
    J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, MI, 1975)Google Scholar
  63. 63.
    C.H. Darwin, The origins of species by means of natural selection (Penguin Classics, London, 1859)Google Scholar
  64. 64.
    D. Whitley, A genetic algorithm tutorial. Statistics and Computing 4, 65–85 (1994)CrossRefGoogle Scholar
  65. 65.
    H.P. Schwefel, Numerical optimization of computer models (Wiler, Chichester, 1981)Google Scholar
  66. 66.
    P. Ross, Genetic algorithms and genetic programming: Lecturer Notes (University of Edinburgh, Department of Artificial Intelligence , 1996)Google Scholar
  67. 67.
    H. M\(\ddot{u}\)hlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithms: continuous parameter optimization. Evolutionary Computation, 1(1):25–49, 1993.Google Scholar
  68. 68.
    H. M\(\ddot{u}\)hlenbein and D. Schlierkamp-Voosen. The science of breeding and its application to the breeder genetic algorithm bga. Evolutionary Computation, 1(4):335–360, 1994.Google Scholar
  69. 69.
    K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, 1975.Google Scholar
  70. 70.
    A. Wetzel, Evaluation of the effectiveness of genetic algorithms in combinatorial optimization (University of Pittsburgh, Technical report , 1983)Google Scholar
  71. 71.
    D. Ackley. A connectionist machine for genetic hill climbing. Kluwer Academic Publisher, 1987.Google Scholar
  72. 72.
    R. Dawkins. The selfish gene. Oxford Press, 1976.Google Scholar
  73. 73.
    C.J. Lumsden, E.O. Wilson, Genes, Mind, and Culture (Harvard University Press, Cambridge, 1981)Google Scholar
  74. 74.
    C.J. Lumsden, E.O. Wilson, Promethean Fire (Harvard University Press, Cambridge, 1983)Google Scholar
  75. 75.
    P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report 826, California Institute of Technology, Pasadena, California, USA, 1989.Google Scholar
  76. 76.
    P. Moscato. Memetic algorithms: a short introduction. In D. Corne, M. Dorigo, and F. Glover, editors, New ideas in optimization, pages 219–234. McGraw-Hill, 1999.Google Scholar
  77. 77.
    L. Davis, Genetic algorithms and simulated annealing (Pitman, London, 1987)Google Scholar
  78. 78.
    R.G. Le Riche, C. Knopf-Lenoir, and R.T. Haftka. A segregated genetic algorithms for constraint structural optimisation. In L.J. Eshelman, editor, Proceedings of the sixth international conference on genetic algorithms, pages 558–565. San Mateo, California, July 1995. University of Pittsburgh, Morgan Kaufmann, 1995.Google Scholar
  79. 79.
    D. Dasgupta, Z. Michalewicz, Evolutionary algorithms in engineering applications (Springer-Verlag, Berlin, 1997)Google Scholar
  80. 80.
    J.T. Richardson, M.R. Palmer, G. Liepins, and M. Hilliard. Some guidelines for genetic algorithms with penalty functions. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 191–197. Morgan Kaufmann Publisher, 1989.Google Scholar
  81. 81.
    A. Homaifar, CX Qi, and SH Lai. Constrained optimization via genetic algorithms, simulations. Engineering Optimization 62, 242–254 (1994)Google Scholar
  82. 82.
    Z. Michalewicz and N. Attia. Evolutionary optimization of constrained problems. Proceedings of the 3rd Annual Conference on Evolutionary Programming, pages 98–108, 1994.Google Scholar
  83. 83.
    A.B. Hadj-Alouane and J.C. Bean. A genetic algorithm for the multiple-choice integer program. Technical Report TR-92-50, Department of Industrial and Operations Engineering, The University of Michigan, 1992.Google Scholar
  84. 84.
    A.K. Morales and C.V. Quezada. A universal eclectic genetic algorithm for constrained optimization. Proceedings of the 6th European Congress on Intelligent Techniques and, Soft Computing, EUFIT’98, pp. 518–522, 1998.Google Scholar
  85. 85.
    Z. Michalewicz and G. Nazhiyath. Genocop iii: A co-evolutionary algorithm for numerical optimization with nonlinear constraints. In D.B. Fogel, editor, Proceedings of the Second IEEE International Conference on Evolutionary Computation, pages 647–651. IEEE Press, 1995.Google Scholar
  86. 86.
    M. Schoenauer and S. Xanthakis. Constrained ga optimization. The Fourth International Conference on Genetic Algorithms, ICGA93, 1993.Google Scholar
  87. 87.
    C.A. Coello, Self-adaptive penalties for ga-based optimization. , Congress on. Evolutionary Computation 1(573–580), 1999 (1999)Google Scholar
  88. 88.
    M. Lema\(\dot{i}\)tre and G. Verfaillie. An incomplete method for solving distributed valued constraint satisfaction problems. AAAI-97 Workshop on Constraints and Agents, 1997.Google Scholar
  89. 89.
    S. Minton, M.D. Johnston, A.B. Philips, P. Laird, Minimizing conflicts: a heuristic method for constraint-satisfaction and scheduling problems. Artificial Intelligence 58, 161–205 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    G.E. Liepins, M.D. Vose, Representational issues in genetic optimization. Journal of Experimental and Theoretical Computer Science 2(2), 4–30 (1990)Google Scholar
  91. 91.
    G.E. Liepins and W.D. Potter. A genetic algorithm approach to multiple-fault diagnosis. In L. Davis, editor, Handbook of Genetic Algorithms, pages 237–250. Van Nostrand Reinhold, 1991.Google Scholar
  92. 92.
    H. M\(\ddot{u}\)hlenbein. Parallel genetic algorithms in combinatorial optimization. In O. Balci, R. Sharda, and S. Zenios, editors, Computer Science and Operations Research, pages 441–456. Pergamon Press, 1992.Google Scholar
  93. 93.
    Z. Michalewicz and C.Z. Janikow. Handling constraints in genetic algorithms. In L.B. Booker, editor, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 151–157. Morgan Kaufmann, 1991.Google Scholar
  94. 94.
    D. Orvosh, L. Davis, Using genetic algorithm to optimize problems with feasibility constraints (Proceedings of the First IEEE Conference on, Evolutionary Computation , 1994), pp. 548–553Google Scholar
  95. 95.
    R.G. Le Riche, R.T. Haftka, Improved genetic algorithm for minimum thickness composite laminate design. Composites Engineering 3(1), 121–139 (1994)Google Scholar
  96. 96.
    J. Xiao, Z. Michalewicz, K. Trojanowski, Adaptive evolutionary planner/navigator for mobile robots. IEEE Transactions on Evolutionary Computation 1(1), 18–28 (1997)CrossRefGoogle Scholar
  97. 97.
    J. Xiao, Z. Michalewicz, L. Zhang. Evolutionary planner/navigator: operator performance and self-tuning. Proceedings of the 3rd IEEE International Conference on, Evolutionary Computation, 1996.Google Scholar
  98. 98.
    D. Whitley, V.S. Gordon, K. Mathias, Lamarckian evolution, the baldwin effect and function optimization, in Parallel problem-solving methods from nature PPSN III, pp, ed. by Y. Davidor, H.-P. Schwefel, R. Manner (Springer-Verlag, Berlin, 1994), pp. 6–15Google Scholar
  99. 99.
    C.R. Houck, J.A. Joines, M.G. Kay, Utilizing Lamarckian evolution and the Baldwin effect in hybrid genetic algorithms (NCSU-IE Technical, Report, 1996), pp. 96–01Google Scholar
  100. 100.
    C. Wellock and B. J. Ross. An examination of lamarckian genetic algorithms. In 2001 Genetic and Evolutionary Computation Conference (GECCO) Late Breaking Papers, pages 474–481, 2001.Google Scholar
  101. 101.
    G.E. Hinton, S.J. Nowlan, How learning can guide evolution. Complex Systems 1, 492–502 (1987)Google Scholar
  102. 102.
    M. G. Kirley, X. Li, D. G. Green. Investigation of a cellular genetic algorithm that mimics landscape ecology. In, Lecture Notes in Computer Science Volume 1585/1999, pp. 90–97, 1999.Google Scholar
  103. 103.
    M.G. Kirley, A cellular genetic algorithm with disturbances: optimisation using dynamic spatial interactions. Journal of Heuristics 8, 321–242 (2002)CrossRefzbMATHGoogle Scholar
  104. 104.
    D.G. Green, Fire and stability in the postglacial forests of southwest nova scotia. Journal of Biogeography 9, 29–40 (1982)CrossRefGoogle Scholar
  105. 105.
    J.H. Holland, Emergence: from Chaos to Order (Addison-Wesley, Redwood City, California, 1998)Google Scholar
  106. 106.
    D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  107. 107.
    R. E. Smith and N. Taylor. A framework for evolutionary computation in agent-based systems. In Proceedings of the 1998 International conference on Intelligent Systems, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Information TechnologyMonashClaytonAustralia
  2. 2.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of EducationXidian UniversityXi’anPeople’s Republic of China
  3. 3.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia

Personalised recommendations