Dual-Phase Evolution

  • David G. GreenEmail author
  • Jing Liu
  • Hussein A. Abbass


Dual-phase evolution (DPE) is a theory about evolutionary processes of different kinds. In this chapter, we present examples to show how it can explain a wide variety of different phenomena. In later chapters we will explore its application to evolutionary computation and other.


Social Network Genetic Module Small World Boolean Network Local Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wikipedia, World Wide Web (2010)Google Scholar
  2. 2.
    National Centre for Biochemical Information (NCBI). GenBank. (2010)Google Scholar
  3. 3.
    Human Genome Project Information, U.S. Department of Energy (2010)Google Scholar
  4. 4.
    H. Haken, The Science of Structure: Synergetics (Van Nostrand Reinhold, New York, 1981)Google Scholar
  5. 5.
    P. Hogeweg, B. Hesper, The ontogeny of the interaction structure in bumble bee colonies: a mirror model. Behav. Ecol. Sociobiol. 12, 271–283 (1983)CrossRefGoogle Scholar
  6. 6.
    J. Teo, H.A. Abbass, Multi-objectivity and complexity in embodied cognition. IEEE Trans. Evol. Comput. 9(4), 337–360 (2005)CrossRefGoogle Scholar
  7. 7.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A.N. Kolmogorov, Three approaches to the quantitative definition of information. Proc. Inform. Transm. 1, 4–7 (1965)MathSciNetGoogle Scholar
  9. 9.
    G.J. Chaitin, On the lengths of programs for computing binary sequences. J. Assoc. Comput. Mach. 13, 547–569 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    C.S. Wallace, D.M. Boulton, An information measure for classification. Comput. J. 11(2), 185–194 (1968)CrossRefzbMATHGoogle Scholar
  11. 11.
    C.S. Wallace, Statistical and inductive inference by minimum message length, inc., ed. by M. Jordan, J. Kleinberg, B. Scholkopf (Springer Science+Business Media, New York, 2005)Google Scholar
  12. 12.
    D.L. Dowe, Foreword. Comput. J. 51(5), 523–560 (2008)CrossRefGoogle Scholar
  13. 13.
    D.G. Green, Emergent behaviour in biological systems. Complex. Int. 1, 24–35 (1993)Google Scholar
  14. 14.
    D.G. Green, Self-organization in complex systems, in Complex Systems, ed. by T.R.J. Bossomaier, D.G. Green (Cambridge University Press, New York, 2000), pp. 7–41Google Scholar
  15. 15.
    P. Erdős, A. Rényi, On the evolution of random graphs. Mat. Kutato. Int. Koz 1(5), 17–61 (1960)Google Scholar
  16. 16.
    D.G. Green, N.I. Klomp, G.R. Rimmington, S. Sadedin, Complexity in Landscape Ecology (Springer, Amsterdam, 2006)Google Scholar
  17. 17.
    N. Eldredge, S.J. Gould, Punctuated Equilibria: An Alternative to Phyletic Gradualism, in Models in Paleobiology, ed. by T.J.M. Schopf (Freeman, Cooper, San Francisco, 1972), pp. 82–115Google Scholar
  18. 18.
    L.W. Alvarez, W. Alvarez, F. Asaro, H.V. Michel, Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208, 1095–1108 (1980)CrossRefGoogle Scholar
  19. 19.
    D.G. Green, Fire and stability in the postglacial forests of southwest Nova Scotia. J. Biogeogr. 9, 29–40 (1982)CrossRefGoogle Scholar
  20. 20.
    D.G. Green, Connectivity and complexity in ecological systems. Pacific Conserv. Biol. 1(3), 194–200 (1994)Google Scholar
  21. 21.
    G. Paperin, D G. Green, S. Sadedin, T.G. Leishman, A dual phase evolution model of adaptive radiation in landscapes. Lecture Notes in Artificial Intelligence, (Springer, Berlin, Germany, 2007), pp. 131–143Google Scholar
  22. 22.
    D.G. Green, T.G. Leishman, S. Sadedin, Dual phase evolution—a mechanism for self-organization in complex systems. Int. J. 1–80 (2006)Google Scholar
  23. 23.
    D.A. Roshier, A.I. Robertson, R.T. Kingsford, D.G. Green, Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia. Landscape Ecol. 16, 547–556 (2001)CrossRefGoogle Scholar
  24. 24.
    C. Sturmbauer, Explosive speciation in cichlid fishes of the African great lakes: a dynamic model of adaptive radiation. J. Fish Biol. 53, 18–36 (1998)CrossRefGoogle Scholar
  25. 25.
    C.A. Rebernig, G.A. Schneeweiss, K.E. Bardy, P. Schonswetter, J.L. Villasenor, R. Obermyer, T.F. Stuessy, H. Weiss-Schneeweiss, Multiple pleistocene refugia and holocene range expansion of an abundant southwestern american desert plant species (Melampodium leucanthum, Asteraceae). Mol. Ecol. 19(16), 3421–3442 (2010)CrossRefGoogle Scholar
  26. 26.
    D.G. Green, Landscapes, cataclysms and population explosions. Math. Comput. Model. 13(6), 75–82 (1990)CrossRefGoogle Scholar
  27. 27.
    D.G. Green, Connectivity and the evolution of biological systems. J. Biol. Syst. 2(1), 91–103 (1994)CrossRefGoogle Scholar
  28. 28.
    D.G. Green, D. Newth, M.G. Kirley. Connectivity and catastrophe—towards a general theory of evolution, ed. by M. Bedau, J.S. McCaskill, N.H. Packard, S. Rasmussen, J. McCaskill, and N. Packard. Proceedings of the 7th International Conference on the Synthesis and Simulation of Living Systems.(ALife VII) (2000)Google Scholar
  29. 29.
    D.G. Green, M.G. Kirley, Adaptation, diversity and spatial patterns. Int. J. Knowl.-Based Intell. Eng. Syst. 4(3), 184–190 (2000)Google Scholar
  30. 30.
    D.G. Green, D. Newth, D. Cornforth, M. Kirley, On Evolutionary Processes, in Natural and Artificial Systems, ed. by P. Whigham Proceedings of the 5th Australia–Japan Joint Workshop on Intelligent and Evolutionary Systems, et al. (The University of Otago, Dunedin, New Zealand, 2001), pp. 1–10Google Scholar
  31. 31.
    T.G. Leishman, D.G. Green, S. Driver. Self-organization in simulated social networks. in Proceedings of International Conference on Computer Mediated Social Networking, 2008 Google Scholar
  32. 32.
    G. Paperin, D.G. Green, and T.G. Leishman, Dual phase evolution and self-organisation in networks, ed. by X. Li, M. Kirley, M. Zhang, D. Green, V. Ciesielski, H. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K.C. Tan, J. Branke, and Y. Shi, in Proceedings of the 7th International Conference on Simulated Evolution and Learning (Springer, Melbourne, Australia, 2008)Google Scholar
  33. 33.
    M. Kirley, X. Li, and D.G. Green, The cellular genetic algorithm, ed. by X.Yao, in SEAL98, pp. 93–100, (1998)Google Scholar
  34. 34.
    M. Kirley, D.G. Green, and D. Newth, Multi-objective Problem, Multi-species Solution: An Application of the Cellular Genetic Algorithm, ed. by M. Mohammadian, in Proceedings of International Conference on Advances in Intelligent Systems: Theory and Applications, (IOS press, 2000), pp. 129–134Google Scholar
  35. 35.
    T.G. Leishman, D.G. Green, G. Paperin, Dual phase evolution—a mechanism for self-organization and optimization. In Proceedings of the 11th Asia-Pacific Workshop on Intelligent and Evolutionary Systems, (National Defence Academy Japan, 2007), pp. 1–8Google Scholar
  36. 36.
    G. Paperin, D.G. Green, S. Sadedin, Dual phase evolution in complex adaptive systems. J. Royal Soc. Interface (2011)Google Scholar
  37. 37.
    D.G. Green, S. Sadedin, T.G. Leishman, Self-organization. Systems Ecology, 4 of Encyclopedia of, Ecology, 3195–3203 (2008)Google Scholar
  38. 38.
    L.H.V. Vlack. Elements of Materials Science and Engineering. (Prentice Hall, 1980)Google Scholar
  39. 39.
    N. Uchida, Y. Mikami, H. Kintoh, K. Murakami, N. Fukata, M. Mitome, M. Hase, M. Kitajima, Site-selective formation of si nanocrystal in SiO2 by femtosecond laser irradiation and al deoxidization effects. Appl. Phys. Lett. 92, 153112 (2008)CrossRefGoogle Scholar
  40. 40.
    G. Brierley, K. Fryirs, V. Jain, Landscape connectivity: the geographic basis of geomorphic applications. Area 38, 165–174 (2006)CrossRefGoogle Scholar
  41. 41.
    I. Hors, F. Lordon, About some formalisms of interaction phase transition models in economics? J. Evol. Econ. 7, 355–373 (1997)CrossRefGoogle Scholar
  42. 42.
    A. Kirman, The economy as an evolving network. J. Evol. Econ. 7, 339–353 (1997)CrossRefGoogle Scholar
  43. 43.
    J.B. Davis, Complexity Theory’s Network Conception of the Individual, ed. by A. Giacomin and M.C. Marcuzzo Money and Markets: A Doctrinal Approach, (Routledge, 2007), pp. 30–47Google Scholar
  44. 44.
    S.C. Cobb, The role of corporate, professional, and personal networks in the provision of offshore financial services. Environ. Plann. A 31, 1877–1892 (1999)CrossRefGoogle Scholar
  45. 45.
    G. Iori, G. De Masi, O.V. Precup, G. Gabbi, G. Caldarelli, A network analysis of the italian overnight money market. J. Econ. Dyn. Control 32, 259–278 (2008)CrossRefzbMATHGoogle Scholar
  46. 46.
    T.G. Leishman, D.G. Green, S. Driver, Self-organization in simulated social networks, in Computer Mediated Social Networking LNAI5322, ed. by M. Purvis, B.T.R. Savarimuthu (Springer, Berlin, 2009), pp. 150–156CrossRefGoogle Scholar
  47. 47.
    R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)Google Scholar
  48. 48.
    R. Axelrod, D. Dion, The further evolution of cooperation. Science 242, 1385–1390 (1988)CrossRefGoogle Scholar
  49. 49.
    M.A. Nowak, R.M. May, Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  50. 50.
    P.G. Harrald, D.B. Fogel, Evolving continuous behaviors in the iterated prisoner’s dilemma. BioSystems 37, 135–145 (1996)CrossRefGoogle Scholar
  51. 51.
    G. Abramson, M. Kuperman, Social games in a social network. Phys. Rev. E 63, 030901 (2001)CrossRefGoogle Scholar
  52. 52.
    F. Schweitzer, L. Behera, H. Mühlenbein, Evolution of cooperation in a spatial prisoner’s dilemma. Adv. Complex Syst. 5, 269–299 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    R. Dunbar, Grooming (Gossip and the Evolution of Language (Faber and Faber, London, 1996)Google Scholar
  54. 54.
    R. Stocker, D. G. Green, and D. Newth. Consensus and cohesion in simulated social networks. J. Artif. Soc. Social Simul. (JASSS), 4(4)(2001)Google Scholar
  55. 55.
    D.G. Green, T.G. Leishman, and S. Sadedin, The emergence of social consensus in simulation studies with Boolean networks, ed. by S. Takahashi, D. Sallach, and J. Rouchier. Proceedings of the First World Congress on Social Simulation (Kyoto, 2006), pp. 1–8Google Scholar
  56. 56.
    T.G. Bransden, D.G. Green, Getting Along with Your Neighbours–Emergent Cooperation in Networks of Adaptive Agents, in Workshop on Intelligent and Evolutionary Systems (IES2005), ed. by A. Ohuchi, K. Suzuki, M. Gen, D.G. Green (Future University-Hakodate, Japan, 2005)Google Scholar
  57. 57.
    T.G. Leishman and D.G. Green, Boolean networks as models of social behaviour. Proceedings of the 8th Asia-Pacific Complex Systems Conference, (COSNet, Queensland Australia, 2007), p. 60Google Scholar
  58. 58.
    R. Stocker, D. Cornforth, D.G. Green, A simulation of the impact of media on social cohesion. Adv. Complex Syst. 6(3), 349–359 (2003)CrossRefzbMATHGoogle Scholar
  59. 59.
    D.G. Green, T.G. Leishman, S. Sadedin, G. D. Leishman, Of ants and men-the role of complexity in social change. Evol. Inst. Econ. Rev. 6(2):to appear, (2010)Google Scholar
  60. 60.
    P.S. Bearman, J. Moody, K. Stovel, Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol. 110(1), 44–91 (2004)CrossRefGoogle Scholar
  61. 61.
    W.J. Freeman, The physiology of perception. Sci. Am. 264, 78–85 (1991)CrossRefGoogle Scholar
  62. 62.
    J. Piaget, B (Inhelder, The psychology of the child, 2000)Google Scholar
  63. 63.
    K.D. Bennett, He spread of Fagus grandifolia across North America during the last 18,000 years. J. Biogeogr 12, 147–164 (1985)CrossRefGoogle Scholar
  64. 64.
    M.B. Davis, Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13, 13–26 (1976)Google Scholar
  65. 65.
    A.P. Kershaw, J.S. Clark, A.M. Gill, D.M. D’Costa, A History of Fire, in Australia, ed. by R.A. Bradstock, J.E. Williams, A.M. Gill, Flammable Australia: The Fire Regimes and Biodiversity of a Continent, (Cambridge University Press, Cambridge, 2002), pp. 3–25Google Scholar
  66. 66.
    G. Singh, E.A. Geissler, Late cainozoic history of vegetation, fire, lake levels and climate, at lake George, new South Wales, Australia. Philos. Trans. Royal Soc. London. Series B, Biol. Sci. 311, 379–447 (1985)Google Scholar
  67. 67.
    Monash virtual laboratory. (2010)Google Scholar
  68. 68.
    A. Kruess, T. Tscharntke, Habitat fragmentation, species loss, and biological control. Science 264, 1581–1584 (1994)CrossRefGoogle Scholar
  69. 69.
    J.H. Holland, Hidden Order: How Adaptation Builds Complexity (University of Michigan Press, Ann Arbor, 1995)Google Scholar
  70. 70.
    L.H. Gunderson, C.S. Holling, Panarchy: Understanding Transformations in Human and Natural Systems. (Island Press, 2002)Google Scholar
  71. 71.
    B. Walker, C.S. Holling, S.R. Carpenter, and A. Kinzig. Resilience, adaptability and transformability in social and ecological systems. Ecol. Soc. 9(5), (2004)Google Scholar
  72. 72.
    P. Bak, C. Tang, K. Weisenfeld, Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefGoogle Scholar
  73. 73.
    P. Bak, C. Tang, K. Weisenfeld, Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    P. Bak, K. Sneppen, Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71(4083) (1993)Google Scholar
  75. 75.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, Telos, 1999)Google Scholar
  76. 76.
    C.G. Langton, Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1–3), 12–37 (1990)MathSciNetCrossRefGoogle Scholar
  77. 77.
    C.G. Langton, Life at the edge of chaos. In C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, editors, Proceedings of the 2nd International Conference on the Synthesis and Simulation of Living Systems (ALife II). Addison Wesley, (1991)Google Scholar
  78. 78.
    N. Kashtan, U. Alon, Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences 102, 13773 (2005)Google Scholar
  79. 79.
    S. Sadedin, D.G. Green, Dual phase evolution enhances adaptation of binary strings. Technical report, Technical report 2010/259, Clayton School of Information Technology, Monash University (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Information TechnologyMonashClaytonAustralia
  2. 2.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of EducationXidian UniversityXi’anPeople’s Republic of China
  3. 3.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia

Personalised recommendations