Skip to main content

Nanotechnology Innovations for Low-Temperature Fuel Cells for Micro Autonomous Systems

  • Chapter
  • First Online:
Selected Topics in Micro/Nano-robotics for Biomedical Applications

Abstract

The requirement for longer and uninterrupted operation by micro autonomous systems calls for alternatives to the incumbent battery technology. The proton exchange membrane fuel cell (PEMFC) presents a comparative advantage over battery technology due to their higher energy density and ability to operate continuously without the need for recharging. The cost of expensive catalyst materials utilized by the PEMFCs has so far impeded this technology. The dramatic success of the electronics industry in making cheaper and more efficient products has created new pathways for PEMFC advancement. This chapter discusses the integration of nano/microfabrication practices and techniques to fuel cell systems design. A new technique with the ability to produce high-aspect ratio features of sub-micrometer critical dimension and larger by leveraging the tools of electron beam lithography and advanced dry etching from the established techniques of nano/microtechnology is also discussed. This capability opens the possibility of creating a variety of novel architectures for fuel cells and other electrochemical devices (including sensors, electrolyzers, and electrochemical reactors, among others) and the promise of cost reduction through the model of microelectronics technology that leverages integration of components, rapid batch processing, automation, and economies of scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizawa M, Gyoten H, Salah A, Liu X (2010) Pillar structured membranes for suppressing cathodic concentration overvoltage in PEMFCs at elevated temperature/low relative humidity. J Electrochem Soc 157(12):B1844–B1851

    Article  Google Scholar 

  2. Banerjee S, Curtin DE (2004) Nafion® perfluorinated membranes in fuel cells. J Fluorine Chem 125(8):1211–1216

    Article  Google Scholar 

  3. Barbir F, Yazici S (2008) Status and development of PEM fuel cell technology. Int J Energy Res 32(5):369–378

    Article  Google Scholar 

  4. Campbell SA (2001) The science and engineering of microelectronic fabrication. Oxford University Press, New York

    Google Scholar 

  5. Challa VR, Prasad MG, Fisher FT (2011) Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct 20:025004

    Article  Google Scholar 

  6. Charles C, Ramdutt D, Brault P, Caillard A, Bulla D, Boswell R, Rabat H, Dicks A (2007) Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells. Plasma Phys Control Fusion 49(5A):A73–A79

    Google Scholar 

  7. Chen D, Li W, Peng H (2008) An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sour 180(1):461–467

    Article  Google Scholar 

  8. Cho YH, Bae JW, Cho YH, Lim JW, Ahn M, Yoon WS, Kwon NH, Jho JY, Sung YE (2010) Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell. Int J Hydrogen Energy 35(19):10452–10456

    Article  Google Scholar 

  9. De Almeida SH, Kawano Y (1999) Thermal behavior of Nafion membranes. J Therm Anal Calorim 58(3):569–577

    Article  Google Scholar 

  10. Franssila S (2010) Introduction to microfabrication. Wiley, West Sussex

    Book  Google Scholar 

  11. Gasda MD, Teki R, Lu TM, Koratkar N, Eisman GA, Gall D (2009) Sputter-deposited Pt PEM fuel cell electrodes: particles vs layers. J Electrochem Soc 156(5):B614–B619

    Article  Google Scholar 

  12. Gasteiger HA, Markovic NM (2009) Just a dream or future reality? Science 324(5923):48–49

    Article  Google Scholar 

  13. Grot W (2007) Flourinated ionomers (plastic design library fluorocarbon). William Andrew, New York

    Google Scholar 

  14. Gruber D, Müller J (2007) Enhancing PEM fuel cell performance by introducing additional thin layers to sputter-deposited Pt catalysts. J Power Sour 171(2):294–301

    Article  Google Scholar 

  15. Heitner-Wirguin C (1996) Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J Membr Sci 120(1):1–33

    Article  Google Scholar 

  16. Joh HI, Ha TJ, Hwang SY, Kim JH, Chae SH, Cho JH, Prabhuram J, Kim SK, Lim TH, Cho BK, Oh JH, Moon SH, Ha HY (2010) A direct methanol fuel cell system to power a humanoid robot. J Power Sour 195(1):293–298

    Article  Google Scholar 

  17. Kim SJ, Lee IT, Kim YH (2007) Performance enhancement of IPMC actuator by plasma surface treatment. Smart Mater Struct 16:N6

    Article  Google Scholar 

  18. Lee SJJ, Cha SW, Hayre R (2001) Miniature fuel cells with non-planar interface by microfabrication. In: Jain M, Ryan A, Surampudi RA, Nagarajan G (eds) Power sources for the new millennium. The Electrochemical Society, Pennington, p 67

    Google Scholar 

  19. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC, Boca Raton

    Google Scholar 

  20. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4586

    Article  Google Scholar 

  21. O’Hayre R, Lee SJ, Cha SW, Prinz FB (2002) A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. J Power Sour 109(2):483–493

    Article  Google Scholar 

  22. Omosebi A, Besser RS (2011) Electron beam assisted patterning and dry etching of Nafion membranes. J Electrochem Soc 158(10):D603–D610

    Article  Google Scholar 

  23. Ozturk O, Ozdemir OK, Ulusoy II, Ahsen AS, Slavcheva E (2010) Effect of Ti sublayer on the ORR catalytic efficiency of dc magnetron sputtered thin Pt films. Int J Hydrogen Energy 35(10):4466–4473

    Article  Google Scholar 

  24. Pichonat T, Gauthier-Manuel B (2007) Recent developments in MEMS-based miniature fuel cells. Microsyst Technol 13(11):1671–1678

    Article  Google Scholar 

  25. Plummer JD, Deal MD, Griffin PB (2000) Silicon VLSI technology: fundamentals, practice and modeling. Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Prasanna M, Cho EA, Kim HJ, Lim TH, Oh IH, Hong SA (2006) Effects of platinum loading on performance of proton-exchange membrane fuel cells using surface-modified Nafion® membranes. J Power Sour 160(1):90–96

    Article  Google Scholar 

  27. Shah K, Shin WC, Besser RS (2004) A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques. Sens Actuators B Chem 97(2–3):157–167

    Article  Google Scholar 

  28. Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal Today 77(1–2):17–49

    Article  Google Scholar 

  29. Yeom S-W, Il-Kwon O (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18(8):085002

    Google Scholar 

  30. Taylor AD, Lucas BD, Guo LJ, Thompson LT (2007) Nanoimprinted electrodes for micro-fuel cell applications. J Power Sour 171(1):218–223

    Article  Google Scholar 

  31. Wilhelm AN, Surgenor BW, Pharoah JG (2006) Design and evaluation of a micro-fuel-cell-based power system for a mobile robot. IEEE/ASME Trans Mechatron 11(4):471–475

    Article  Google Scholar 

  32. Zhang Y, Lu J, Shimano S, Zhou H, Maeda R (2007) Nanoimprint of proton exchange membrane for MEMS-based fuel cell application. In: 6th International IEEE conference on polymers and adhesives in microelectronics and photonics, polytronic 2007, proceedings 2007, pp 91–95

    Google Scholar 

  33. Zhang Y, Lu J, Zhou H, Itoh T, Maeda R (2008) Application of nanoimprint technology in MEMS-based micro direct-methanol fuel cell (μ-DMFC). J Microelectromech Syst 17(4):1020–1028

    Article  Google Scholar 

  34. Zhou Z, Dominey RN, Rolland JP, Maynor BW, Pandya AA, DeSimone JM (2006) Molded, high surface area polymer electrolyte membranes from cured liquid precursors. J Am Chem Soc 128(39):12963–12972

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Besser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Omosebi, A., Besser, R.S. (2013). Nanotechnology Innovations for Low-Temperature Fuel Cells for Micro Autonomous Systems. In: Guo, Y. (eds) Selected Topics in Micro/Nano-robotics for Biomedical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8411-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8411-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8410-4

  • Online ISBN: 978-1-4419-8411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics