Skip to main content

Sleep Homeostasis, Adenosine, Caffeine, and Narcolepsy

  • Chapter
  • First Online:
Narcolepsy
  • 1925 Accesses

Abstract

Many functional aspects of wakefulness and sleep, including excessive daytime sleepiness, vigilance, attention, sleep structure, and quantitative measures derived from the electroencephalogram (EEG) are tightly controlled by two interacting processes: (1) a circadian program providing temporal context to most physiological processes including sleep and (2) a homeostatic process keeping track of “sleep pressure.” Sleep homeostasis is conceptualized in the two-process model of sleep regulation [1] as the build-up of sleep pressure (or “sleep need”) during wakefulness and the dissipation of sleep pressure during sleep. The homeostatic regulation of rest/sleep is a common principle in invertebrates, fish, and mammals [2]. In humans, we think today that the circadian system opposes homeostatic changes in sleep pressure, to enable healthy people to stay awake and alert throughout a normal waking day despite accumulating sleep pressure associated with wakefulness [3]. Vice versa, circadian clock and sleep homeostasis interact to permit healthy individuals to remain asleep during the night despite the waning of sleep need. When wakefulness is prolonged (“sleep deprivation”) and sleep pressure exceeds an average “reference value,” subjective and objective measures of sleepiness increase, vigilance deteriorates, and attention is impaired. Moreover, theta activity in the waking EEG, as well as slow-wave sleep (SWS; nonREM sleep stages 3 and 4) and EEG slow-wave activity (SWA; spectral power within 0.75–4.5 Hz) are enhanced in recovery sleep. Particularly, SWA (or “delta activity”) in nonREM sleep is predictably correlated with the duration of preceding wakefulness. This physiological measure constitutes the classical, highly reliable marker of sleep homeostasis, which served to delineate the basic concepts of the two-process model of sleep regulation [1,4]. The neurobiological mechanisms underlying nonREM sleep homeostasis remain incompletely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1:195–204.

    PubMed  Google Scholar 

  2. Cirelli C, Tononi G. Is sleep essential? PLoS Biol. 2008;6:1605–11.

    Article  CAS  Google Scholar 

  3. Franken P, Dijk DJ. Circadian clock genes and sleep homeostasis. Eur J Neurosci. 2009;29:1820–9.

    Article  PubMed  CAS  Google Scholar 

  4. Daan S, Beersma DGM, Borbély AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol. 1984;246:R161–78.

    PubMed  CAS  Google Scholar 

  5. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73:379–96.

    Article  PubMed  CAS  Google Scholar 

  6. Landolt HP. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol. 2008;75:2070–9.

    Article  PubMed  CAS  Google Scholar 

  7. Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86:1009–31.

    Article  PubMed  CAS  Google Scholar 

  8. Pascual O, Casper KB, Kubera C, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113–6.

    Article  PubMed  CAS  Google Scholar 

  9. Halassa MM, Florian C, Fellin T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron. 2009;61:213–9.

    Article  PubMed  CAS  Google Scholar 

  10. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Internatl Rev Neurobiol. 2005;63:191–270.

    Article  CAS  Google Scholar 

  11. Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J Neurosci. 2001;21:2610–21.

    PubMed  CAS  Google Scholar 

  12. Rétey JV, Adam M, Honegger E, et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A. 2005;102:15676–81.

    Article  PubMed  Google Scholar 

  13. Sebastiao AM, Ribeiro JA. Adenosine receptors and the central nervous system. In: Wilson CN, Mustafa SJ, editors. Handbook of experimental pharmacology, vol. 193. Berlin, Heidelberg: Springer; 2009. p. 471–534.

    Google Scholar 

  14. Bauer A, Ishiwata K. Adenosine receptor ligands and PET imaging of the CNS. In: Wilson CN, Mustafa SJ, editors. Handbook of experimental pharmacology, vol. 193. Berlin, Heidelberg: Springer; 2009. p. 617–42.

    Google Scholar 

  15. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12:283–90.

    Article  PubMed  Google Scholar 

  16. Thakkar MM, Winston S, McCarley RW. A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. J Neurosci. 2003;23:4278–87.

    PubMed  CAS  Google Scholar 

  17. Bjorness TE, Kelly CL, Gao TS, Poffenberger V, Greene RW. Control and function of the homeostatic sleep response by adenosine A(1) receptors. J Neurosci. 2009;29:1267–76.

    Article  PubMed  CAS  Google Scholar 

  18. Elmenhorst D, Basheer R, McCarley RW, Bauer A. Sleep deprivation increases A(1) adenosine receptor density in the rat brain. Brain Res. 2009;1258:53–8.

    Article  PubMed  CAS  Google Scholar 

  19. Elmenhorst D, Meyer PT, Winz OH, et al. Sleep deprivation increases A(1) adenosine receptor binding in the human brain: A positron emission tomography study. J Neurosci. 2007;27:2410–5.

    Article  PubMed  CAS  Google Scholar 

  20. Scammell TE, Gerashchenko DY, Mochizuki T, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107:653–63.

    Article  PubMed  CAS  Google Scholar 

  21. Gallopin T, Luppi PH, Cauli B, et al. The endogenous somnogen adenosine excites a subset of sleep-­promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience. 2005;134:1377–90.

    Article  PubMed  CAS  Google Scholar 

  22. Hayaishi O, Urade Y, Eguchi N, Huang Z-L. Genes for prostaglandin D synthase and receptor as well as adenosine A2A receptor are involved in the homeostatic regulation of NREM sleep. Arch Ital Biol. 2004;142:533–9.

    PubMed  CAS  Google Scholar 

  23. Huang ZL, Qu WM, Eguchi N, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8:858–9.

    Article  PubMed  CAS  Google Scholar 

  24. Rétey JV, Adam M, Khatami R, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007;81:692–8.

    Article  PubMed  Google Scholar 

  25. Rétey JV, Adam M, Gottselig JM, et al. Adenosinergic mechanisms contribute to individual differences in sleep-deprivation induced changes in neurobehavioral function and brain rhythmic activity. J Neurosci. 2006;26:10472–9.

    Article  PubMed  Google Scholar 

  26. Landolt HP, Rétey JV, Tönz K, et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuro­psychopharmacology. 2004;29:1933–9.

    Article  PubMed  CAS  Google Scholar 

  27. Wyatt JK, Cajochen C, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep. 2004;27:374–81.

    PubMed  Google Scholar 

  28. Khatami R, Landolt HP, Achermann P, et al. Insufficient non-REM sleep intensity in narcolepsy-cataplexy. Sleep. 2007;30:980–9.

    PubMed  Google Scholar 

  29. Besset A, Tafti M, Nobile L, Billiard M. Homeostasis and narcolepsy. Sleep. 1994;17:S29–34.

    PubMed  CAS  Google Scholar 

  30. Khatami R, Landolt HP, Achermann P, et al. Challenging sleep homeostasis in narcolepsy-­cataplexy: implications for non-REM and REM sleep regulation. Sleep. 2008;31:859–67.

    PubMed  Google Scholar 

  31. Olafsdottir BR, Rye DB, Scammell TE, Matheson JK, Stefansson K, Gulcher JR. Polymorphisms in hypocretin/orexin pathway genes and narcolepsy. Neurology. 2001;57:1896–9.

    Article  PubMed  CAS  Google Scholar 

  32. Dauvilliers Y, Baumann CB, Carlander B, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry. 2003;74:1667–73.

    Article  PubMed  CAS  Google Scholar 

  33. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.

    Article  PubMed  CAS  Google Scholar 

  34. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24:6291–300.

    Article  PubMed  CAS  Google Scholar 

  35. Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: A possible sleep-promoting effect. J Neurophysiol. 2007;97:837–48.

    Article  PubMed  CAS  Google Scholar 

  36. Satoh S, Matsumura H, Kanbayashi T, et al. Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A(2A) receptor agonist. Behav Brain Res. 2006;170:277–86.

    Article  PubMed  CAS  Google Scholar 

  37. Mitler MM, Walsleben J, Sangal RB, Hirshkowitz M. Sleep latency on the maintenance of wakefulness test (MWT) for 530 patients with narcolepsy while free of psychoactive drugs. Electroencephalogr Clin Neurophysiol. 1998;107:33–8.

    Article  PubMed  CAS  Google Scholar 

  38. Conlay LA, Conant JA, deBros F, Wurtman R. Caffeine alters plasma adenosine levels. Nature. 1997;389:136.

    Article  PubMed  CAS  Google Scholar 

  39. Siegel JM. Narcolepsy. Sci Am. 2000;282:76–81.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Caroline Kopp for discussion and helpful comments on the manuscript. His research summarized in this chapter was supported by Swiss National Science Foundation, Center for Neuroscience Zürich (ZNZ), and Zürich Center for Integrative Human Physiology (ZIHP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Landolt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Landolt, HP. (2011). Sleep Homeostasis, Adenosine, Caffeine, and Narcolepsy. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics