Skip to main content

Dopaminergic Substrates Underlying Hypersomnia, Sleepiness, and REM Sleep Expression

  • Chapter
  • First Online:
Narcolepsy

Abstract

Dopamine is the most abundant monoamine, and it modulates diverse behaviors including movement, motivation/reward, cognition, and feeding that share one notable feature in common – viz., each occurs during wake. Dopamine’s influence upon normal and pathological states of wake and sleep has only recently begun to receive widespread attention. This rebirth of interest bears directly upon the pathophysiology and treatment of impairments in arousal encountered in narcolepsy with cataplexy, narcolepsy lacking cataplexy, the primary hypersomnias, and several psychiatric and medical conditions in which narcolepsy-like phenotypes are encountered. A comprehensive accounting presented in a recent publication includes a more complete bibliography [1]. Here, we briefly summarize current knowledge of the functional anatomy of brain dopamine networks and how they modulate wake and REM-sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman AA, Rye DB, editors. Dopamine in behavioral state control. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  2. Nicola S, Surmeier J, Malenka R. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Ann Rev Neurosci. 2000;23:185–215.

    Article  PubMed  CAS  Google Scholar 

  3. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    PubMed  CAS  Google Scholar 

  4. Cragg S, Greenfield S. Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area and striatum. J Neurosci. 1997;17:5738–46.

    PubMed  CAS  Google Scholar 

  5. Lee RS, Steffensen SC, Henriksen SJ. Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci. 2001;21:1757–66.

    PubMed  CAS  Google Scholar 

  6. McCormick DA. Are thalamocortical rhythms the Rosetta Stone of a subset of neurological disorders? Nat Med. 1999;5:1349–51.

    Article  PubMed  CAS  Google Scholar 

  7. Keating G, Rye D. Where you least expect it: dopamine in the pons aion of sleep and REM-sleep. Sleep. 2003;26:788–9.

    PubMed  Google Scholar 

  8. Khaldy H, Leon J, Escames G, Bikjdaouene L, Garcia JJ, Acuna-Castroviejo D. Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology. 2002;75:201–8.

    Article  PubMed  CAS  Google Scholar 

  9. McClung C, Sidiropoulou K, Vitaterna M, et al. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci U S A. 2005;102:9377–81.

    Article  PubMed  CAS  Google Scholar 

  10. Andretic R, Hirsh J. Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000;97:1873–8.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Borreguero D, Larrosa O, Granizo JJ, de la Llave Y, Hening WA. Circadian variation in neuroendocrine response to L-dopa in patients with restless legs syndrome. Sleep. 2004;27:669–73.

    PubMed  Google Scholar 

  12. Poceta JS, Parsons L, Engelland S, Kripke DF. Circadian rhythm of CSF monoamines and hypocretin-1 in restless legs syndrome and Parkinson’s disease. Sleep Med. 2009;10:129–33.

    Article  PubMed  Google Scholar 

  13. Freeman A, Morales J, Beck J, et al. In vivo diurnal rhythm of dopamine measured in the putamen of non-human primates. Sleep. 2006;29:A69.

    Google Scholar 

  14. Nishino S, Mao J, Sampathkumaran R, Shelton J, Mignot E. Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res. 1998;1:49–61. Online.

    CAS  Google Scholar 

  15. Wisor J, Nishino S, Sora I, Uhl G, Mignot E, Edgar D. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21:1787–94.

    PubMed  CAS  Google Scholar 

  16. Porzgen P, Park SK, Hirsh J, Sonders MS, Amara SG. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol Pharmacol. 2001;59:83–95.

    PubMed  CAS  Google Scholar 

  17. Kume K, Kume S, Park SK, Hirsh J, Jackson FR. Dopamine is a regulator of arousal in the fruit fly. J Neurosci. 2005;25:7377–84.

    Article  PubMed  CAS  Google Scholar 

  18. Wu MN, Koh K, Yue Z, Joiner WJ, Sehgal A. A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep. 2008;31:465–72.

    PubMed  Google Scholar 

  19. Andretic R, van Swinderen B, Greenspan RJ. Dopaminergic modulation of arousal in Drosophila. Curr Biol. 2005;15:1165–75.

    Article  PubMed  CAS  Google Scholar 

  20. Calabrese E. Dopamine: biphasic dose responses. Crit Rev Toxicol. 2001;31:563–83.

    Article  PubMed  CAS  Google Scholar 

  21. Doi M, Yujnovsky I, Hirayama J, et al. Impaired light masking in dopamine receptor-null mice. Nat Neurosci. 2006;9:732–4.

    Article  PubMed  CAS  Google Scholar 

  22. Hue G, Decker M, Solomon I, Rye D. Increased wakefulness and hyper-responsivity to novel environments in mice lacking functional dopamine D3 receptors. Soc Neurosci. 2003;616:16.

    Google Scholar 

  23. Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology. 2007;32:1232–41.

    Article  PubMed  CAS  Google Scholar 

  24. Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci. 2003;6:968–73.

    Article  PubMed  CAS  Google Scholar 

  25. Kitai ST, Shepard PD, Callaway JC, Scroggs R. Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol. 1999;9:690–7.

    Article  PubMed  CAS  Google Scholar 

  26. Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci. 2006;26:193–202.

    Article  PubMed  CAS  Google Scholar 

  27. Sakata M, Sei H, Toida K, Fujihara H, Urushihara R, Morita Y. Mesolimbic dopaminergic system is involved in diurnal blood pressure regulation. Brain Res. 2002;928:194–201.

    Article  PubMed  CAS  Google Scholar 

  28. Decker M, Keating G, Freeman A, Rye D. Parkinsonian-like sleep-wake architecture in rats with bilateral striatal 6-OHDA lesions. Soc Neurosci Abstr. 2000;26:1514.

    Google Scholar 

  29. Decker MJ, Keating G, Hue GE, Freeman A, Rye DB. Mesolimbic dopamine’s modulation of REM Sleep. J Sleep Res. 2002;51(Suppl):51–2.

    Google Scholar 

  30. Rye D, Daley J, Freeman A, Bliwise D. Daytime Sleepiness and Sleep Attacks in Idiopathic Parkinson’s Disease. In: Bedard M-A, Agid Y, Chouinard S, Fahn S, Korcyzn A, Lesperance P, editors. Mental and behavioral dysfunction in movement disorders. Totawa, NJ: Humana; 2003. p. 527–38.

    Chapter  Google Scholar 

  31. Mori T, Ito S, Kuwaki T, Yanagisawa M, Sawaguchi T. Monoaminergic neuronal changes in orexin deficient mice. Neuropharmacology. 2010;58:826–32.

    Article  PubMed  CAS  Google Scholar 

  32. Faull KF, Guilleminault C, Berger PA, Barchas JD. Cerebrospinal fluid monoamine metabolites in narcolepsy and hypersomnia. Ann Neurol. 1983;13:258–63.

    Article  PubMed  CAS  Google Scholar 

  33. Volkow ND, Fowler JS, Logan J, et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA. 2009;301:1148–54.

    Article  PubMed  CAS  Google Scholar 

  34. Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci. 2008;28:8462–9.

    Article  PubMed  CAS  Google Scholar 

  35. Nishino S, Arrigoni J, Valtier D, et al. Dopamine D2 mechanisms in canine narcolepsy. J Neurosci. 1991;11:2666–71.

    PubMed  CAS  Google Scholar 

  36. Okura M, Fujiki N, Kita I, et al. The roles of midbrain and diencephalic dopamine cell groups in the regulation of cataplexy in narcoleptic Dobermans. Neurobiol Dis. 2004;16:274–82.

    Article  PubMed  CAS  Google Scholar 

  37. Livrea P, Puca FM, Barnaba A, Di Reda L. Abnormal central monoamine metabolism in humans with “true hypersomnia” and “sub-wakefulness”. Eur Neurol. 1977;15:71–6.

    Article  PubMed  CAS  Google Scholar 

  38. Bassetti C, Khatami R, Proyazova R, Buck F. Idiopathic Hypersomnia: a dopaminergic disorder? Sleep. 2009;32:A248–9.

    Google Scholar 

  39. Chesson Jr AL, Levine SN, Kong LS, Lee SC. Neuroendocrine evaluation in Kleine-Levin syndrome: evidence of reduced dopaminergic tone during periods of hypersomnolence. Sleep. 1991;14:226–32.

    PubMed  Google Scholar 

  40. Hoexter MQ, Shih MC, Mendes DD, et al. Lower dopamine transporter density in an asymptomatic patient with Kleine-Levin syndrome. Acta Neurol Scand. 2008;117:370–3.

    Article  PubMed  CAS  Google Scholar 

  41. Mignot E, Lin L, Finn L, et al. Correlates of sleep-onset REM periods during the Multiple Sleep Latency Test in community adults. Brain. 2006;129:1609–23.

    Article  PubMed  Google Scholar 

  42. Singh M, Drake CL, Roth T. The prevalence of multiple sleep-onset REM periods in a population-based sample. Sleep. 2006;29:890–5.

    PubMed  Google Scholar 

  43. Parker KP, Bliwise DL, Bailey JL, Rye DB. Daytime sleepiness in stable hemodialysis patients. Am J Kidney Dis. 2003;41:394–402.

    Article  PubMed  Google Scholar 

  44. Adachi N, Lei B, Deshpande G, et al. Uraemia suppresses central dopaminergic metabolism and impairs motor activity in rats. Intensive Care Med. 2001;27:1655–60.

    Article  PubMed  CAS  Google Scholar 

  45. Rye DB, Dihenia B, Bliwise DL. Reversal of atypical depression, sleepiness, and REM-sleep propensity in narcolepsy with bupropion. Depress Anxiety. 1998;7:92–5.

    Article  PubMed  CAS  Google Scholar 

  46. Reite M, Laudenslager M, Jones J, Crnic L, Kaemingk K. Interferon decreases REM latency. Biol Psychiatry. 1987;22:104–7.

    Article  PubMed  CAS  Google Scholar 

  47. Felger JC, Alagbe O, Hu F, et al. Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry. 2007;62:1324–33.

    Article  PubMed  CAS  Google Scholar 

  48. Decker MJ, Hue GE, Caudle WM, Miller GW, Keating GL, Rye DB. Episodic neonatal hypoxia evokes executive dysfunction and regionally specific alterations in markers of dopamine signaling. Neuroscience. 2003;117:417–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are extended to our close colleagues Drs. Andy Miller, Glenda Keating, Michael Decker, Gillian Hue, and Jennifer Felger who contributed much to the body of this work. Dr. Rye is supported by USPHS grant NS-055015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Rye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rye, D.B., Freeman, A.A.H. (2011). Dopaminergic Substrates Underlying Hypersomnia, Sleepiness, and REM Sleep Expression. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics