Skip to main content

Histamine in Narcolepsy and Excessive Daytime Sleepiness

  • Chapter
  • First Online:
  • 1841 Accesses

Abstract

Central histaminergic neurotransmission, originating from the tuberomammillary nucleus (TMN) in the posterior hypothalamus, constitutes one of the most important wake-active systems (see [1, 2] for review). Similar to other monoaminergic systems, histaminergic neurons consist of almost ubiquitous and long projections, a characteristic of neuronal circuits that are involved in vigilance control. Histaminergic neurons are active, and histamine release is high during wakefulness [3, 4]. There is evidence that histaminergic neurotransmission is interacting with other sleep–wake regulatory systems to mediate physiological wakefulness and other physiological functions during wakefulness [1, 2]. However, we do not well understand how the histaminergic system interacts with other sleep–wake regulatory systems, and how these systems are harmonized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63:637–72.

    Article  PubMed  CAS  Google Scholar 

  2. Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.

    Article  PubMed  CAS  Google Scholar 

  3. Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 1999;840:138–47.

    Article  PubMed  CAS  Google Scholar 

  4. Vanni-Mercier G, Sakai K, Jouvet M. Wake-state specific neurons for wakefulness in the posterior hypothalamus in the cat. C R Acad Sci III. 1984;298:195–200.

    PubMed  CAS  Google Scholar 

  5. Sherin J, Shiromani P, McCarley R, Saper C. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271:216–20.

    Article  PubMed  CAS  Google Scholar 

  6. Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci. 1998;18:4705–21.

    PubMed  CAS  Google Scholar 

  7. Nishino S. Clinical and neurobiological aspects of narcolepsy. Sleep Med. 2007;8:373–99.

    Article  PubMed  Google Scholar 

  8. Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron. 2003;38:715–30.

    Article  PubMed  CAS  Google Scholar 

  9. Yamanaka A, Tsujino N, Funahashi H, Honda K, Guan JL, Wang QP, et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun. 2002;290:1237–45.

    Article  PubMed  CAS  Google Scholar 

  10. Lin JS. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev. 2000;4:471–503.

    Article  PubMed  CAS  Google Scholar 

  11. Salmun LM. Antihistamines in late-phase clinical development for allergic disease. Expert Opin Investig Drugs. 2002;11:259–73.

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Liu C, Lovenberg TW. Molecular and pharmacological characterization of the mouse histamine H3 receptor. Eur J Pharmacol. 2003;467:57–65.

    Article  PubMed  CAS  Google Scholar 

  13. Wouterlood FG, Gaykema RP, Steinbusch HW, Watanabe T, Wada H. The connections between the septum-diagonal band complex and histaminergic neurons in the posterior hypothalamus of the rat. Anterograde tracing with Phaseolus vulgaris-leucoagglutinin combined with immunocytochemistry of histidine decarboxylase. Neuroscience. 1988;26:827–45.

    Article  PubMed  CAS  Google Scholar 

  14. Ericson H, Blomqvist A, Kohler C. Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol. 1991;311:45–64.

    Article  PubMed  CAS  Google Scholar 

  15. Ericson H, Blomqvist A, Kohler C. Brainstem afferents to the tuberomammillary nucleus in the rat brain with special reference to monoaminergic innervation. J Comp Neurol. 1989;281:169–92.

    Article  PubMed  CAS  Google Scholar 

  16. Yang QZ, Hatton GI. Histamine mediates fast synaptic inhibition of rat supraoptic oxytocin neurons via chloride conductance activation. Neuroscience. 1994; 61:955–64.

    Article  PubMed  CAS  Google Scholar 

  17. Stevens DR, Kuramasu A, Haas HL. GABAB-receptor-mediated control of GABAergic inhibition in rat histaminergic neurons in vitro. Eur J Neurosci. 1999;11:1148–54.

    Article  PubMed  CAS  Google Scholar 

  18. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci. 2002;22:7695–711.

    PubMed  CAS  Google Scholar 

  19. Inoue I, Yanai K, Kitamura D, Taniuchi I, Kobayashi T, Niimura K, et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci U S A. 1996;93: 13316–20.

    Article  PubMed  CAS  Google Scholar 

  20. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.

    Article  PubMed  CAS  Google Scholar 

  21. Ripley B, Fujiki N, Okura M, Mignot E, Nishino S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol Dis. 2001;8:525–34.

    Article  PubMed  CAS  Google Scholar 

  22. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435:6–25.

    Article  PubMed  CAS  Google Scholar 

  23. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998;438:71–5.

    Article  PubMed  CAS  Google Scholar 

  24. Lu XY, Baganol D, Bagonol C, Lei FM, Burke S, Akil H, et al. Expression of orexin 1 and orexin 2 receptor mRNA are differently regulated in the rat brain by food deprivation. Abstr Soc Neurosci. 1999;25:958.

    Google Scholar 

  25. Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, et al. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2001;14:1571–5.

    Article  PubMed  CAS  Google Scholar 

  26. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21:9273–9.

    PubMed  CAS  Google Scholar 

  27. Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A. 2001;98:9965–70.

    Article  PubMed  CAS  Google Scholar 

  28. Mochizuki T, Yamatodani A, Okakura K, Horii A, Inagaki N, Wada H. Circadian rhythm of histamine release from the hypothalamus of freely moving rats. Physiol Behav. 1992;51:391–4.

    Article  PubMed  CAS  Google Scholar 

  29. Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, et al. Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience. 2002;113:663–70.

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H, et al. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci. 2001;14:1075–81.

    Article  PubMed  CAS  Google Scholar 

  31. Yoshida Y, Nishino S, Ishizuka T, Yamatodani A. Vigilance change, hypocretin and histamine release in rats before and after a histamine synthesis blocker (alpha-FMH) administration. Sleep. 2005;28:A18.

    Google Scholar 

  32. Nishino S, Fujiki N, Ripley B, Sakurai E, Kato M, Watanabe T, et al. Decreased brain histamine contents in hypocretin/orexin receptor-2 mutated narcoleptic dogs. Neurosci Lett. 2001;313:125–8.

    Article  PubMed  CAS  Google Scholar 

  33. Nishino S, Riehl J, Hong J, Kwan M, Reid M, Mignot E. Is narcolepsy REM sleep disorder? Analysis of sleep abnormalities in narcoleptic Dobermans. Neurosci Res. 2000;38:437–46.

    Article  PubMed  CAS  Google Scholar 

  34. Faull KF, Zeller-DeAmicis LC, Radde L, Bowersox SS, Baker TL, Kilduff TS, et al. Biogenic amine concentrations in the brains of normal and narcoleptic canines: current status. Sleep. 1986;9:107–10.

    PubMed  CAS  Google Scholar 

  35. Mefford IN, Baker TL, Boehme R, Foutz AS, Ciaranello RD, Barchas JD, et al. Narcolepsy: biogenic amine deficits in an animal model. Science. 1983;220:629–32.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida Y, Ishizuka T, Yamatodani A, Okuro M, Nishino S. Brain histamine release in freely moving narcoleptic and wild type mice. Sleep. 2009; 32:A12.

    Google Scholar 

  37. Soya S, Song YH, Kodama T, Honda Y, Fujiki N, Nishino S. CSF histamine levels in rats reflect the central histamine neurotransmission. Neurosci Lett. 2008;430:224–9.

    Article  PubMed  CAS  Google Scholar 

  38. Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, et al. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep. 2009;32: 175–80.

    PubMed  Google Scholar 

  39. Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep. 2009;32:181–7.

    PubMed  Google Scholar 

  40. Tedford CE, Edgar DM, Seidel WF, Mignot E, Nishino S, Pawlowski GP, et al. Effects of a novel, selective, and potent histamine H3 receptor antagonist, GT-2332, on rat sleep/wakefulness and canine cataplexy. Abstr Soc Neurosci. 1999;25:1134.

    Google Scholar 

  41. Lin JS, Sakai K, Vanni-Mercier G, Arrang JM, Garbarg M, Schwartz JC, et al. Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat. Brain Res. 1990;523:325–30.

    Article  PubMed  CAS  Google Scholar 

  42. Shiba T, Fujiki N, Wisor J, Edgar D, Sakurai T, Nishino S. Wake promoting effects of thioperamide, a histamine H3 antagonist in orexin/ataxin-3 narcoleptic mice. Sleep. 2004;27(suppl):A241–2.

    Google Scholar 

  43. Okuro M, Matsumura M, Fujiki N, Nishino S. Evaluations of wake promoting effects of histamine h3 antagonist in h3 receptor knockout mice. Sleep. 2008;31:A220–1.

    Google Scholar 

  44. Fujiki N, Yoshino F, Lovenberg TW, Nishino S. Wake promoting effects of non-imidazolin histamine H3 antagonist in orexin/ataxin-3 narcoleptic mice. Sleep. 2006;29:A230.

    Google Scholar 

  45. Lin JS, Dauvilliers Y, Arnulf I, Bastuji H, Anaclet C, Parmentier R, et al. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin−/− mice and patients. Neurobiol Dis. 2008;30:74–83.

    Article  PubMed  Google Scholar 

  46. Guo RX, Anaclet C, Roberts JC, Parmentier R, et al. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox−/− mice. Br J Pharmacol. 2009;157:104–17.

    Article  PubMed  CAS  Google Scholar 

  47. Kiyono S, Seo ML, Shibagaki M, Watanabe T, Maeyama K, Wada H. Effects of alpha-fluoromethylhistidine on sleep-waking parameters in rats. Physiol Behav. 1985;34:615–7.

    Article  PubMed  CAS  Google Scholar 

  48. Morimoto T, Yamamoto Y, Mobarakeh JI, Yanai K, Watanabe T, Yamatodani A. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol Behav. 1999;67:679–83.

    Article  PubMed  CAS  Google Scholar 

  49. Kollonitsch J, Perkins LM, Patchett AA, Doldouras GA, Marburg S, Duggan DE, et al. Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature. 1978;274:906–8.

    Article  PubMed  CAS  Google Scholar 

  50. Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T. Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun. 2003;303:120–9.

    Article  PubMed  CAS  Google Scholar 

  51. Fujiki N, Yoshino F, Nishino S. Vigilance change by acute histamine depletion with a-FMH in orexin/ataxin-3 narcoleptic and wild type mice. Sleep. 2008; 31:A218–9.

    Google Scholar 

  52. Yanai K, Okamura N, Tagawa M, Itoh M, Watanabe T. New findings in pharmacological effects induced by antihistamines: from PET studies to knock-out mice. Clin Exp Allergy. 1999;29 Suppl 3:29–36. discussion 37–8.

    PubMed  CAS  Google Scholar 

  53. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437: 1257–63.

    Article  PubMed  CAS  Google Scholar 

  54. Mignot E, Taheri S, Nishino S. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci. 2002;5(Suppl):1–6.

    Google Scholar 

  55. Miller JD, Farber J, Gatz P, Roffwarg H, German DC. Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res. 1983;273:133–41.

    Article  PubMed  CAS  Google Scholar 

  56. Nishino S, Mignot E. CNS stimulants in sleep medicine: basic mechanisms and pharmacology. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier Saunders; 2005. p. 468–98.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nishino, S. (2011). Histamine in Narcolepsy and Excessive Daytime Sleepiness. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics