Skip to main content

Metabolic Influence on the Hypocretin/Orexin Neurons

  • Chapter
  • First Online:
Narcolepsy
  • 1780 Accesses

Abstract

The reciprocal connection between hypocretin neurons and body energy balance was recognized essentially at the moment of their discovery, when Sakurai et al. showed that (1) intracerebroventricular injection of orexin-A/hypocretin-1 dose dependently increases food intake and (2) prepro-orexin/hypocretin mRNA levels in the lateral hypothalamus are upregulated by fasting [1]. Thus, very early on, the hypocretin system was viewed as a feeding–promoting system activated by falling body energy levels, and this picture is still accurate. However, it is important to note that the net impact of hypocretin cell activity on body weight is probably either insignificant or negative, and not positive as would be expected from a purely feeding-promoting system. This is because hypocretin cell activity also stimulates metabolism, and this “energy-burning” action of hypocretins is presumably greater then their “energy-obtaining” role, since destruction of hypocretin cells leads to late-onset obesity thought to be due to a reduction of energy expenditure [2]. Thus it is more accurate to view the hypocretin system as an orchestrator network that engages multiple processes – wakefulness, hunger, reward-seeking behavior, increased locomotor activity – that help to facilitate successful food seeking. This orchestration is thought to be carried out by diverse projections of hypocretin neurons to wakefulness, reward, breathing, and autonomic centers [3, 4]. This chapter will focus on hypocretin neurons themselves and review evidence supporting the idea that unlike most other neurons in the brain, hypocretin cells act as specialized electrical sensors of ambient nutrient levels, and hence their impact on brain state may critically depend on body energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    Article  PubMed  CAS  Google Scholar 

  2. Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.

    Article  PubMed  CAS  Google Scholar 

  3. Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.

    PubMed  CAS  Google Scholar 

  4. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.

    Article  PubMed  CAS  Google Scholar 

  5. Willie JT, Chemelli RM, Sinton CM, Yanagisawa M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci. 2001;24:429–58.

    Article  PubMed  CAS  Google Scholar 

  6. Moriguchi T, Sakurai T, Nambu T, Yanagisawa M, Goto K. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett. 1999;264(1–3):101–4.

    Article  PubMed  CAS  Google Scholar 

  7. Griffond B, Risold PY, Jacquemard C, Colard C, Fellmann D. Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett. 1999;262(2):77–80.

    Article  PubMed  CAS  Google Scholar 

  8. Cai XJ, Widdowson PS, Harrold J, et al. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes. 1999;48(11):2132–7.

    Article  PubMed  CAS  Google Scholar 

  9. Yamanaka A, Beuckmann CT, Willie JT, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38(5):701–13.

    Article  PubMed  CAS  Google Scholar 

  10. Burdakov D, Luckman SM, Verkhratsky A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2227–35.

    Article  PubMed  CAS  Google Scholar 

  11. Burdakov D, Gonzalez JA. Physiological functions of glucose-inhibited neurones. Acta Physiol (Oxf). 2009;195(1):71–8.

    Article  CAS  Google Scholar 

  12. Silver IA, Erecinska M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci. 1994;14(8):5068–76.

    PubMed  CAS  Google Scholar 

  13. Routh VH. Glucose-sensing neurons: are they physiologically relevant? Physiol Behav. 2002;76(3):403–13.

    Article  PubMed  CAS  Google Scholar 

  14. Burdakov D, Gerasimenko O, Verkhratsky A. Physio­logical changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci. 2005;25(9):2429–33.

    Article  PubMed  CAS  Google Scholar 

  15. Burdakov D, Jensen LT, Alexopoulos H, et al. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron. 2006;50(5):711–22.

    Article  PubMed  CAS  Google Scholar 

  16. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4.

    Article  PubMed  CAS  Google Scholar 

  17. Williams RH, Burdakov D. Silencing of ventromedial hypothalamic neurons by glucose-stimulated K(+) currents. Pflugers Arch. 2009;458(4):777–83.

    Article  PubMed  CAS  Google Scholar 

  18. Glowik RM, Golowasch J, Keller R, Marder E. D-glucose-sensitive neurosecretory cells of the crab Cancer borealis and negative feedback regulation of blood glucose level. J Exp Biol. 1997;200(Pt 10):1421–31.

    PubMed  CAS  Google Scholar 

  19. Gonzalez JA, Jensen LT, Doyle SE, et al. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci. 2009;30(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  20. Guyon A, Tardy MP, Rovere C, Nahon JL, Barhanin J, Lesage F. Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels. J Neurosci. 2009;29(8):2528–33.

    Article  PubMed  CAS  Google Scholar 

  21. Burdakov D, Lesage F. Glucose-induced inhibition: how many ionic mechanisms? Acta Physiol (Oxf). 2009;198(3):295–301.

    Article  Google Scholar 

  22. Ashcroft FM, Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143.

    Article  PubMed  CAS  Google Scholar 

  23. Ashford ML, Boden PR, Treherne JM. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch. 1990;415(4):479–83.

    Article  PubMed  CAS  Google Scholar 

  24. Levin BE, Routh VH, Kang L, Sanders NM, Dunn-Meynell AA. Neuronal glucosensing: what do we know after 50 years? Diabetes. 2004;53(10):2521–8.

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez JA, Jensen LT, Fugger L, Burdakov D. Metabolism-independent sugar sensing in central orexin neurons. Diabetes. 2008;57(10):2569–76.

    Article  PubMed  CAS  Google Scholar 

  26. Song Z, Routh VH. Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes. 2005;54(1):15–22.

    Article  PubMed  CAS  Google Scholar 

  27. Mobbs CV, Kow LM, Yang XJ. Brain glucose-sensing mechanisms: ubiquitous silencing by aglycemia vs. hypothalamic neuroendocrine responses. Am J Physiol Endocrinol Metab. 2001;281(4):E649–54.

    PubMed  CAS  Google Scholar 

  28. Carpenter R. Neurophysiology. 4th ed. London: Arnold; 2003.

    Google Scholar 

  29. Williams RH, Alexopoulos H, Jensen LT, Fugger L, Burdakov D. Adaptive sugar sensors in hypothalamic feeding circuits. Proc Natl Acad Sci USA. 2008;105(33):11975–80.

    Article  PubMed  CAS  Google Scholar 

  30. Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402(4):460–74.

    Article  PubMed  CAS  Google Scholar 

  31. Muroya S, Funahashi H, Yamanaka A, et al. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci. 2004;19(6):1524–34.

    Article  PubMed  Google Scholar 

  32. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004;7(5):493–4.

    Article  PubMed  Google Scholar 

  33. Fu LY, Acuna-Goycolea C, van den Pol AN. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci. 2004;24(40):8741–51.

    Article  PubMed  CAS  Google Scholar 

  34. Oomura Y, Kimura K, Ooyama H, Maeno T, Iki M, Kuniyoshi M. Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science. 1964;143:484–5.

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.

    PubMed  CAS  Google Scholar 

  36. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649–61.

    Article  PubMed  CAS  Google Scholar 

  37. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63.

    Article  PubMed  CAS  Google Scholar 

  38. Laposky AD, Bass J, Kohsaka A, Turek FW. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett. 2008;582(1):142–51.

    Article  PubMed  CAS  Google Scholar 

  39. Husain AM, Yancy Jr WS, Carwile ST, Miller PP, Westman EC. Diet therapy for narcolepsy. Neurology. 2004;62(12):2300–2.

    Article  PubMed  CAS  Google Scholar 

  40. Garma L, Marchand F. Non-pharmacological appro­aches to the treatment of narcolepsy. Sleep. 1994;17(8 Suppl):S97–102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Burdakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burdakov, D. (2011). Metabolic Influence on the Hypocretin/Orexin Neurons. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics