Skip to main content

The Hypothalamus and Its Functions

  • Chapter
  • First Online:
Narcolepsy

Abstract

This chapter provides a general overview of the hypothalamus with an emphasis on functional neuroanatomy. This lays a foundation for discussing the hypothalamic pathways that regulate wake–sleep behavior, body temperature, body fluid osmolarity, energy balance, and the cardiovascular system. In this picture, the role of hypothalamic hypocretin neurons in orchestrating behavioral and autonomic responses to environmental challenges will stand out. Knowledge of the integrative physiologic role of hypocretin neurons is a prerequisite for understanding the pathophysiology of patients with narcolepsy-cataplexy, in whom hypocretin neurons are lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson RH, Swanson LW. Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Brain Res Rev. 2003;41:153–202.

    Article  PubMed  CAS  Google Scholar 

  2. Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 1983;6:269–324.

    Article  PubMed  CAS  Google Scholar 

  3. Moore RY, Speh JC, Leak RK. Suprachiasmatic nucleus organization. Cell Tissue Res. 2002;309:89–98.

    Article  PubMed  CAS  Google Scholar 

  4. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437687:1257–63.

    Article  Google Scholar 

  5. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.

    Article  PubMed  CAS  Google Scholar 

  6. de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95:322–7.

    Article  PubMed  Google Scholar 

  7. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8:171–81.

    Article  PubMed  CAS  Google Scholar 

  8. Hess W. Das Zwischenhirn: Syndrome Lokalisationen Funktionen (The diencephalon: syndrome localization function). Basel, Switzerland: Benno Schwabe; 1954.

    Google Scholar 

  9. Parmeggiani PL. Physiologic regulation in sleep. In: Kryger MH, Roth T, Dement WE, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: WB Saunders; 2005. p. 85–191.

    Google Scholar 

  10. von Economo C. Schlaftheorie. Ergebn Physiol. 1929;28:312–39.

    Article  Google Scholar 

  11. Nauta W. Hypothalamic regulation of sleep in the rat. An experimental study. J Neurophysiol. 1946;9:285–316.

    PubMed  CAS  Google Scholar 

  12. Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: sleep patterns induced by basal ­forebrain stimulation in the behaving cat. Exp Neurol. 1962;6:103–17.

    Article  PubMed  CAS  Google Scholar 

  13. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271:216–9.

    Article  PubMed  CAS  Google Scholar 

  14. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol. 2004;556:935–46.

    Article  PubMed  CAS  Google Scholar 

  15. Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci. 2008;1129:275–86.

    Article  PubMed  CAS  Google Scholar 

  16. Dentico D, Amici R, Baracchi F, et al. c-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat. Eur J Neurosci. 2009;30:651–61.

    Article  PubMed  Google Scholar 

  17. Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci. 2009;29:1741–53.

    Article  PubMed  CAS  Google Scholar 

  18. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.

    Article  PubMed  CAS  Google Scholar 

  19. Scammell TE, Gerashchenko DY, Mochizuki T, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107:653–63.

    Article  PubMed  CAS  Google Scholar 

  20. McGinty D, Alam MN, Szymusiak R, Nakao M, Yamamoto M. Hypothalamic sleep-promoting mechanisms: coupling to thermoregulation. Arch Ital Biol. 2001;139:63–75.

    PubMed  CAS  Google Scholar 

  21. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441:589–94.

    Article  PubMed  CAS  Google Scholar 

  22. Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 2001;901:259–64.

    Article  PubMed  CAS  Google Scholar 

  23. Takakusaki K, Takahashi K, Saitoh K, et al. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol. 2005;568:1003–20.

    Article  PubMed  CAS  Google Scholar 

  24. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25:6716–20.

    Article  PubMed  CAS  Google Scholar 

  25. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.

    Article  PubMed  CAS  Google Scholar 

  26. Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345–54.

    Article  PubMed  CAS  Google Scholar 

  27. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.

    Article  PubMed  CAS  Google Scholar 

  28. Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74.

    Article  PubMed  CAS  Google Scholar 

  29. Verret L, Goutagny R, Fort P, et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19.

    Article  PubMed  Google Scholar 

  30. Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C. Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol. 2007;505:147–57.

    Article  PubMed  Google Scholar 

  31. Adamantidis A, Salvert D, Goutagny R, et al. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci. 2008;27:1793–800.

    Article  PubMed  Google Scholar 

  32. Rao Y, Lu M, Ge F, et al. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci. 2008;28:9101–10.

    Article  PubMed  CAS  Google Scholar 

  33. Alam MN, Kumar S, Bashir T, et al. GABA-mediated control of hypocretin-but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol. 2005;563:569–82.

    Article  PubMed  CAS  Google Scholar 

  34. Luppi PH, Gervasoni D, Verret L, et al. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris. 2006;100:271–83.

    Article  PubMed  CAS  Google Scholar 

  35. Nakayama T, Eisenman JS, Hardy JD. Single unit activity of anterior hypothalamus during local heating. Science. 1961;134:560–1.

    Article  PubMed  CAS  Google Scholar 

  36. Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007;292:R37–46.

    Article  PubMed  CAS  Google Scholar 

  37. Morrison SF, Nakamura K, Madden CJ. Central control of thermogenesis in mammals. Exp Physiol. 2008;93:773–97.

    Article  PubMed  Google Scholar 

  38. Cerri M, Morrison SF. Activation of lateral hypothalamic neurons stimulates brown adipose tissue thermogenesis. Neuroscience. 2005;135:627–38.

    Article  PubMed  CAS  Google Scholar 

  39. Alam MN, McGinty D, Szymusiak R. Preoptic/anterior hypothalamic neurons: thermosensitivity in rapid eye movement sleep. Am J Physiol. 1995;269:R1250–7.

    PubMed  CAS  Google Scholar 

  40. Szymusiak R, Gvilia I, McGinty D. Hypothalamic control of sleep. Sleep Med. 2007;8:291–301.

    Article  PubMed  Google Scholar 

  41. Krauchi K, Cajochen C, Werth E, Wirz-Justice A. Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr Comp Physiol. 2000;278:R741–8.

    PubMed  CAS  Google Scholar 

  42. Zamboni G, Jones CA, Domeniconi R, et al. Specific changes in cerebral second messenger accumulation underline REM sleep inhibition induced by the exposure to low ambient temperature. Brain Res. 2004;1022:62–70.

    Article  PubMed  CAS  Google Scholar 

  43. Verney E. The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci. 1947;135:25–106.

    Article  PubMed  CAS  Google Scholar 

  44. Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9:519–31.

    Article  PubMed  CAS  Google Scholar 

  45. Watts AG. Dehydration-associated anorexia: development and rapid reversal. Physiol Behav. 1999;65:871–8.

    Article  PubMed  CAS  Google Scholar 

  46. Gvilia I, Angara C, McGinty D, Szymusiak R. Different neuronal populations of the rat median ­preoptic nucleus express c-fos during sleep and in response to hypertonic saline or angiotensin-II. J Physiol. 2005;569:587–99.

    Article  PubMed  CAS  Google Scholar 

  47. Luppi M, Martelli D, Amici R, et al. Hypothalamic osmoregulation is maintained across the wake-sleep cycle in the rat. J Sleep Res. 2010;19:1–6.

    Article  Google Scholar 

  48. Mohr H. Hypertrophie der Hypophysis cerebri und dadurch bedingter Druck auf die Hirngrundfläche, insbesondere auf die Sehnerven, das Chiasma derselben und linkseitigen Hirnschenkel. In: Hirschwald A, ed. Mittheilungen für neuropathologische Studien. Berlin: Wschr. ges. Heilk; 1840:565–571.

    Google Scholar 

  49. Stellar E. The physiology of motivation. Psychol Rev. 1954;61:5–22.

    Article  PubMed  CAS  Google Scholar 

  50. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.

    PubMed  CAS  Google Scholar 

  51. Wynne K, Stanley S, McGowan B, Bloom S. Appetite control. J Endocrinol. 2005;184:291–318.

    Article  PubMed  CAS  Google Scholar 

  52. Simpson KA, Martin NM, Bloom SR. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol. 2009;53:120–8.

    Article  PubMed  Google Scholar 

  53. Woods SC, Seeley RJ, Porte Jr D, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science. 1998;280:1378–83.

    Article  PubMed  CAS  Google Scholar 

  54. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380:243–7.

    Article  PubMed  CAS  Google Scholar 

  55. Marsh DJ, Weingarth DT, Novi DE, et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA. 2002;99:3240–5.

    Article  PubMed  CAS  Google Scholar 

  56. Cai XJ, Liu XH, Evans M, et al. Orexins and feeding: special occasions or everyday occurrence? Regul Pept. 2002;104:1–9.

    Article  PubMed  CAS  Google Scholar 

  57. Burdakov D, Jensen LT, Alexopoulos H, et al. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron. 2006;50:711–22.

    Article  PubMed  CAS  Google Scholar 

  58. Wang J, Osaka T, Inoue S. Energy expenditure by intracerebroventricular administration of orexin to anesthetized rats. Neurosci Lett. 2001;315:49–52.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang S, Zeiiter M, Sakurai T, Nishino S, Mignot E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol. 2007;581:649–63.

    Article  PubMed  Google Scholar 

  60. Yamanaka A, Beuckmann CT, Willie JT, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38:701–13.

    Article  PubMed  CAS  Google Scholar 

  61. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20:68–100.

    Article  PubMed  CAS  Google Scholar 

  62. Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6:736–42.

    Article  PubMed  CAS  Google Scholar 

  63. Shirasaka T, Takasaki M, Kannan H. Cardiovascular effects of leptin and orexins. Am J Physiol Regul Integr Comp Physiol. 2003;284:R639–51.

    PubMed  CAS  Google Scholar 

  64. Berthoud HR, Patterson LM, Sutton GM, Morrison C, Zheng H. Orexin inputs to caudal raphe neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochem Cell Biol. 2005;123:147–56.

    Article  PubMed  CAS  Google Scholar 

  65. Kayaba Y, Nakamura A, Kasuya Y, et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol. 2003;285:R581–93.

    PubMed  Google Scholar 

  66. Chen CT, Hwang LL, Chang JK, Dun NJ. Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am J Physiol Regul Integr Comp Physiol. 2000;278:R692–7.

    PubMed  CAS  Google Scholar 

  67. Machado BH, Bonagamba LGH, Dun SL, Kwok EH, Dun NJ. Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul Pept. 2002;104:75–81.

    Article  PubMed  CAS  Google Scholar 

  68. Ciriello J, Li Z, de Oliveira CV. Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Res. 2003;991:84–95.

    Article  PubMed  CAS  Google Scholar 

  69. Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J Comp Neurol. 1998;391:115–32.

    Article  PubMed  CAS  Google Scholar 

  70. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8:571–8.

    Article  PubMed  CAS  Google Scholar 

  71. Ni XP, Butler AA, Cone RD, Humphreys MH. Central receptors mediating the cardiovascular actions of melanocyte stimulating hormones. J Hypertens. 2006;24:2239–46.

    Article  PubMed  CAS  Google Scholar 

  72. Nicholson JR, Peter JC, Lecourt AC, Barde YA, Hofbauer KG. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function. J Neuroendocrinol. 2007;19:974–82.

    Article  PubMed  CAS  Google Scholar 

  73. Rinne P, Harjunpaa J, Scheinin M, Savontaus E. Blood pressure regulation and cardiac autonomic control in mice overexpressing alpha- and gamma-melanocyte stimulating hormone. Peptides. 2008;29:1943–52.

    Article  PubMed  CAS  Google Scholar 

  74. Hill C, Dunbar JC. The effects of acute and chronic alpha melanocyte stimulating hormone (alphaMSH) on cardiovascular dynamics in conscious rats. Peptides. 2002;23:1625–30.

    Article  PubMed  CAS  Google Scholar 

  75. Kuo JJ, DaSilva AA, Tallam LS, Hall JE. Role of adrenergic activity in pressor responses to chronic melanocortin receptor activation. Hypertension. 2004;43:370–5.

    Article  PubMed  CAS  Google Scholar 

  76. Haynes WG, Morgan DA, Djalali A, Sivitz WI, Mark AL. Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension. 1999;33:542–7.

    Article  PubMed  CAS  Google Scholar 

  77. Silvani A, Bastianini S, Berteotti C, et al. Sleep modulates hypertension in leptin-deficient obese mice. Hypertension. 2009;53:251–5.

    Article  PubMed  CAS  Google Scholar 

  78. Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5:253–61.

    Article  PubMed  CAS  Google Scholar 

  79. Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. 2007;11:163–78.

    Article  PubMed  Google Scholar 

  80. Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111:379–87.

    Article  PubMed  CAS  Google Scholar 

  81. Georgescu D, Zachariou V, Barrot M, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23:3106–11.

    PubMed  CAS  Google Scholar 

  82. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology. 2009;56 Suppl 1:112–21.

    Article  PubMed  CAS  Google Scholar 

  83. Nakamura S, Tsumori T, Yokota S, Oka T, Yasui Y. Amygdaloid axons innervate melanin-concentrating hormone- and orexin-containing neurons in the mouse lateral hypothalamus. Brain Res. 2009;1278:66–74.

    Article  PubMed  CAS  Google Scholar 

  84. Schwartz S, Ponz A, Poryazova R, et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain. 2008;131:514–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Zoccoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zoccoli, G., Amici, R., Silvani, A. (2011). The Hypothalamus and Its Functions. In: Baumann, C., Bassetti, C., Scammell, T. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8390-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8390-9_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8389-3

  • Online ISBN: 978-1-4419-8390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics